Measurement of Elastic Strains in Crystal Surfaces by X-Ray Diffraction Topography

1968 ◽  
pp. 385-393 ◽  
Author(s):  
Brian R. Lawn
1967 ◽  
Vol 11 ◽  
pp. 385-393
Author(s):  
Brian R. Lawn

AbstractThe use of X-ray topographic techniques for studying elastic strains in crystals deformed at their surfaces is becoming widespread, especially in the field of silicon semiconductor devices. Although the broad features of the phenomenological processes involved in producing the strain patterns on the X-ray micrographs are understood, little attention has been devoted to evaluating the detailed nature or range of the strain fields in the crystal. In this paper, an clastic model is proposed for cases in which a region of crystal surface is uniformly deformed over a thin layer. With this model, the associated strain field in the surrounding crystal, which is readily computed from elasticity theory, may be characterized by a single parameter. The model is in accord with observed strain patterns on topographs of abraded diamond surfaces and silicon surfaces onto which a strip of metal film has been evaporated. From the spatial range of the diffraction contrast, an estimate of the parameter characterizing the strain field may be made.


1996 ◽  
Vol 40 (1-8) ◽  
pp. 373-377 ◽  
Author(s):  
V Holy ◽  
A.A Darhuber ◽  
G Bauer ◽  
P.D Wang ◽  
Y.P Song ◽  
...  

2008 ◽  
Vol 4 (6) ◽  
pp. 1677-1687 ◽  
Author(s):  
R. Akhtar ◽  
M.R. Daymond ◽  
J.D. Almer ◽  
P.M. Mummery

2005 ◽  
Vol 875 ◽  
Author(s):  
P. Goudeau ◽  
N. Tamura ◽  
G. Parry ◽  
J. Colin ◽  
C. Coupeau ◽  
...  

AbstractStress/Strain fields associated with thin film buckling induced by compressive stresses or blistering due to the presence of gas bubbles underneath single crystal surfaces are difficult to measure owing to the microscale dimensions of these structures. In this work, we show that micro Scanning X-ray diffraction is a well suited technique for mapping the strain/stress tensor of these damaged structures.


1992 ◽  
Vol 63 (8) ◽  
pp. 3835-3841 ◽  
Author(s):  
J. R. Dennison ◽  
S.‐K. Wang ◽  
P. Dai ◽  
T. Angot ◽  
H. Taub ◽  
...  

1998 ◽  
Vol 546 ◽  
Author(s):  
M. Hommel ◽  
O. Kraft ◽  
S. P. Baker ◽  
E. Arzt

AbstractA special micro-tensile tester was used to carry out tensile tests of thin copper films on substrates. The elastic strain in the film was measured in-situ using x-ray diffraction and the total strain with an external strain gage. From the elastic strains the stresses in the films were calculated and stress-strain curves were obtained. It was observed that the flow stress increases with decreasing film thickness. The method was also applied to investigate the mechanical behavior of films under cyclic loading.


1966 ◽  
Vol 10 ◽  
pp. 153-158 ◽  
Author(s):  
Jun-ichi Chikawa

AbstractImpurity-doped crystals CdS(GaGl3) have been studied by X-ray topography. Some large precipitates are formed close to the crystal surfaces by annealing at 300°C. In the symmetrical Laue case, the precipitates show circular images (30-60 μ in diameter) due to the radial strains around the precipitates which consist of two semicircles separated by a contrast-free plane parallel to the reflecting plane. The observations indicate that the strain field between the crystal surface and precipitate is not responsible for the contrast, and that the images are formed by X-rays which are deviated from the Bragg condition for the perfect region and satisfy the Bragg condition in the strain field on the inside of the precipitate. One of the semicircles is formed by the incident X-rays with larger glancing angles than the Bragg angle and the other with smaller ones. It is concluded that this contrast is due to the strain around a convex lens shaped precipitate.


1966 ◽  
Vol 10 ◽  
pp. 80-90
Author(s):  
H. Barth

AbstractExamination of the substructure of crystalline solids by diffractographic methods has recently developed into an independent field of work alongside atomicstructure analysis. Diffraction micrography with electrons is characterized by the small size of the distortion fields and the high resolving power in small crystal ranges (1000-3000Å thickness). X-ray diffraction micrography is characterized by great reciprocation between wave field and distortion field and by undisturbed preparation and undisturbed testing in the large crystal ranges (up to 15 cm2). There are two groups of examination methods for diffraction micrography with X-rays: (1) Examination with a finely limited, polychromatic or monochromatic X-ray source and moving sample, according to A. R. Lang et al. (2) Examination with a parallel-ray beam of polychromatic or monochromatic X-rays with fixed sample, in accordance with Berg-Barrett et al. For the examination of coarse defects in single-crystalline and poly crystalline matter, the parallel-beam method offers a wide scope for studies in the physics and applications of single-crystal line and polycrystalline solids. This paper therefore includes a summary of the methods using collimation systems and grating diaphragms. Measuring techniques and results are illustrated with the help of reflection and transmission pictures on various crystals. The various methods and refined measuring technique of the parallel-beam method enable the following to be defined: (1) Localization of crystallites from 20 μ diam. upward in a surface up to 15 cm2. (2) Determination of the faces of averted crystallites from 20 µ diam. upward in crystal surfaces. (3) Angle of avertence of crystallites or curvature angles of net faces from 1 to 3° in crystal surfaces up to 15 cm2. (4) Subangle grain boundaries, slip bands, and dislocation lines; also distortion fields (from 20 μ upward) resulting from mechanical, thermal, and radiation damage.


Sign in / Sign up

Export Citation Format

Share Document