Distortion of the Bond Angle in a Magnetic and Its Possible Magnetobiological Implications

Author(s):  
Leo Gross
Keyword(s):  
Inorganics ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 51
Author(s):  
Lin Miao ◽  
Mei-Jiao Liu ◽  
Man-Man Ding ◽  
Yi-Quan Zhang ◽  
Hui-Zhong Kou

The complexes of lanthanide metals, especially dysprosium, can generally exhibit excellent magnetic properties. By means of modifying ligands, dual functions or even multi-functions can be achieved. Here, we synthesized an eight-coordinate Dy(III) complex 1, [Dy(HL-o)2(MeOH)2](ClO4)3·4.5MeOH, which is single-molecule magnet (SMM), and the introduction of the rhodamine 6G chromophore in the ring-opened ligand HL-o realizes ligand-centered fluorescence in addition to SMM. Magnetic measurements and ab initio calculations indicate that the magnetic relaxation for complex 1 should be due to the Raman relaxation process. Studies on magneto-structural correlationship of the rhodamine salicylaldehyde hydrazone Dy(III) complexes show that the calculated energy of the first Kramers Doublet (EKD1) is basically related to the Ophenoxy-Dy-Ophenoxy bond angle, i.e., the larger Ophenoxy-Dy-Ophenoxy bond angle corresponds to a larger EKD1.


1993 ◽  
Vol 46 (9) ◽  
pp. 1337 ◽  
Author(s):  
JK Beattie ◽  
SP Best ◽  
FH Moore ◽  
BW Skelton ◽  
AH White

Room-temperature single-crystal neutron diffraction studies are recorded for two alums, Cs( Rh /V)(SO4)2.12H2O [cubic, Pa3, a 12.357(5) ( Rh ), 12.434(1)Ǻ (V)], residuals 0.037 and 0.068 for 328 and 164 'observed' reflections, with the intention of defining water molecule hydrogen atom orientations. Whereas the two tervalent hexaaqua cations are similar in size [ rM -O = 2.010(6)Ǻ (M = V) and 2.006(2)Ǻ (M = Rh )] the vanadium salt adopts the β alum modification while rhodium gives an α alum. Significantly, the water coordination geometry is different in the two cases with the tilt angle between the plane of the water molecule and the M-O bond vector being 1° (M = V) and 35° (M = Rh ). The tilt angle for water coordinated to rhodium in CsRh (SeO4)2.12H2O is inferred from the unit cell dimensions to be similar to that of the corresponding sulfate salt and not that which generally pertains for caesium selenate alums. Significant differences in the H-O-H bond angle are found for trigonal planar and trigonal pyramidal water coordination, suggesting that differences in the metal(III)-water interaction are a determinant of the geometry of the coordinated water molecule in the caesium sulfate/ selenate alum lattices.


2004 ◽  
Vol 18 (26) ◽  
pp. 3451-3464 ◽  
Author(s):  
JINCANG ZHANG ◽  
YUFENG ZHANG ◽  
SHIXUN CAO ◽  
CHAO JING

The structure and transport properties of perovskite ( La 1-x Y x)2/3 Ca 1/3 MnO 3 (0≤x≤0.3) systems are systematically investigated. It is found that all the specimens show a single-phase structure and reveal a direct relationship between the Curie temperature Tc and the average ionic radius <rA> of La site. With increasing Y 3+ doped content, the metal-insulator transition temperature T MI (M-I) shifts to lower temperature. While the relevant resistivity peak ρp is sharp increased, for the specimens with large doping content, x=0.3, it has enhanced eight orders of magnitudes larger than the non-doped samples (x=0.0). At high concentration area, that is to say, when x>0.1, magnetic studies show a gradual increase of antiferromagnetic interaction with an increase of x, ultimately leading to a spatial-spin disorders, that is, spin-glass-like state for x=0.2 and x=0.3 compounds at about 35 K. The results show that it has connected a reduction of Tc and an increase in magnetoresistance with a decrease in the microstructural Mn - O - Mn bond angle.


2013 ◽  
Vol 69 (2) ◽  
pp. o192-o192 ◽  
Author(s):  
H. C. Devarajegowda ◽  
K. Mahesh Kumar ◽  
S. Seenivasa ◽  
H. K. Arunkashi ◽  
O. Kotresh

In the title compound, C16H17NO4S2, the 2H-chromene ring system is nearly planar, with a maximum deviation of 0.070 (1) Å, and the morpholine ring adopts a chair conformation; the bond-angle sum for its N atom is 357.9°. The dihedral angle between the the 2H-chromene ring and the best plane through the morpholine ring is 89.09 (6)°. An intramolecular C—H...S hydrogen bond occurs. In the crystal, C—H...O hydrogen bonds generateR22(8) rings and π–π interactions occur between fused benzene rings of the chromene system [shortest centroid–centroid distance = 3.5487 (8) Å].


1969 ◽  
Vol 47 (23) ◽  
pp. 4313-4318 ◽  
Author(s):  
L. R. C. Barclay ◽  
G. R. Nixon ◽  
H. M. Foote ◽  
S. L. Barclay

Cyclialkylation of naphthalene with 2,2,5,5-tetramethyltetrahydrofuranone yielded 2-keto-1,1,4,4-tetramethyl-1,2,3,4-tetrahydroanthracene (1). Selenium dioxide oxidation of 1 yielded the corresponding diketone (3) and periodate cleavage of 3 yielded 2,3-naphthalene-diisobutyric acid (4). Hydride reduction of the dimethyl ester (6) of 4 yielded the diol, β,β′-dihydroxy-2,3-di-t-butylnaphthalene (7). The relative chemical shifts of aromatic protons of 1,2,4,5-tetraalkylbenzenes containing gem dimethyls are rationalized in terms of compression effects exerted by the bulky ortho groups. Nuclear magnetic resonance and ultraviolet spectral results for the ortho di-t-butyl aromatic derivatives 4, 6, and 7 are compared to the model cyclic compounds 1 and anhydride (5) of 4 in terms of the strain caused by bond angle deformations in the side chains.


2014 ◽  
Vol 70 (9) ◽  
pp. o905-o906 ◽  
Author(s):  
Md. Serajul Haque Faizi ◽  
Ashraf Mashrai ◽  
Saleem Garandal ◽  
M. Shahid

In the title compound, C22H17N3, the dihedral angles between the central benzene ring and the terminal phenyl ring and quinoline ring system (r.m.s. deviation = 0.027 Å) are 44.72 (7) and 9.02 (4)°, respectively, and the bond-angle sum at the amine N atom is 359.9°. In the crystal, the N—H group is not involved in hydrogen bonding and the molecules are linked by weak C—H...π interactions, generating [010] chains.


The theory of molecular and equivalent orbitals developed in previous papers of this series is used to discuss the spatial distribution of lone-pair electrons in molecules such as H 2 O and NH 3 and the part they play in determining the equilibrium configuration. Previous treatments of H 2 O have assumed that the lone pairs are essentially unaltered by molecular formation. It is shown here, on the other hand, that they will be displaced so as to be mainly concentrated on the side of the O-nucleus remote from the hydrogen atoms. An important consequence of this is that the lone-pair electrons will make a contribution to the total dipole moment. Comparison of the experimentally observed moment with an approximate quantitative treatment suggests that, as a result of this, transfer of electrons from the hydrogen atoms to the oxygen does not occur to the extent that has previously been believed. The variation of the spatial distribution of the orbitals of H 2 O with changes of nuclear configuration is examined and it is shown that, in the equilibrium position, the electronic structure can be described approximately by two sets of two equivalent orbitals pointing in nearly tetrahedral directions. The dependence of total energy on bond angle is discussed and it is shown that electrostatic repulsions between the equivalent orbitals are major factors in determining the equilibrium configuration. Similar considerations apply to NH 3 .


Sign in / Sign up

Export Citation Format

Share Document