Quality of Random Number Generators

Author(s):  
James E. Gentle
2021 ◽  
Vol 13 (2) ◽  
pp. 10-18
Author(s):  
Botond L. Márton ◽  
Dóra Istenes ◽  
László Bacsárdi

Random numbers are of vital importance in today’s world and used for example in many cryptographical protocols to secure the communication over the internet. The generators producing these numbers are Pseudo Random Number Generators (PRNGs) or True Random Number Generators (TRNGs). A subclass of TRNGs are the Quantum based Random Number Generators (QRNGs) whose generation processes are based on quantum phenomena. However, the achievable quality of the numbers generated from a practical implementation can differ from the theoretically possible. To ease this negative effect post-processing can be used, which contains the use of extractors. They extract as much entropy as possible from the original source and produce a new output with better properties. The quality and the different properties of a given output can be measured with the help of statistical tests. In our work we examined the effect of different extractors on two QRNG outputs and found that witg the right extractor we can improve their quality.


1996 ◽  
Vol 07 (03) ◽  
pp. 295-303 ◽  
Author(s):  
P. D. CODDINGTON

Large-scale Monte Carlo simulations require high-quality random number generators to ensure correct results. The contrapositive of this statement is also true — the quality of random number generators can be tested by using them in large-scale Monte Carlo simulations. We have tested many commonly-used random number generators with high precision Monte Carlo simulations of the 2-d Ising model using the Metropolis, Swendsen-Wang, and Wolff algorithms. This work is being extended to the testing of random number generators for parallel computers. The results of these tests are presented, along with recommendations for random number generators for high-performance computers, particularly for lattice Monte Carlo simulations.


In this chapter, the author considers existing methods and means of forming pseudo-random sequences of numbers and also are described the main characteristics of random and pseudorandom sequences of numbers. The main theoretical aspects of the construction of pseudo-random number generators are considered. Classification of pseudorandom number generators is presented. The structures and models of the most popular pseudo-random number generators are considered, the main characteristics of generators that affect the quality of the formation of pseudorandom bit sequences are described. The models of the basic mathematical generators of pseudo-random numbers are considered, and also the principles of building hardware generators are presented.


Author(s):  
Sergii Bilan

The chapter analyzes modern methods for constructing pseudo-random number generators based on cellular automata. Also analyzes the influence of neighborhood forms on the evolution of the functioning of cellular automata, as well as on the quality of the formation of pseudo-random bit sequences. Based on the use of various forms of the neighborhood for the XOR function, the quality of generators was analyzed using graphical tests and NIST tests. As a result of experimental studies, the optimal dimension of cellular automata and the number of heterogeneous cells were determined, which make it possible to obtain a high-quality pseudo-random bit sequence. The obtained results allowed to formulate a method for constructing high-quality pseudo-random number generators based on cellular automata, as well as to determine the necessary initial conditions for generators. The proposed generators allow to increase the length of the repetition period of a pseudo-random bit sequence.


Author(s):  
Maksim Iavich ◽  
◽  
Tamari Kuchukhidze ◽  
Sergiy Gnatyuk ◽  
Andriy Fesenko

Random numbers have many uses, but finding true randomness is incredibly difficult. Therefore, quantum mechanics is used, using the essentially unpredictable behavior of a photon, to generate truly random numbers that form the basis of many modern cryptographic protocols. It is essential to trust cryptographic random number generators to generate only true random numbers. This is why certification methods are needed which will check both the performance of our device and the quality of the random bits generated. Self-testing as well as device independent quantum random number generation methods are analyzed in the paper. The advantages and disadvantages of both methods are identified. The model of a novel semi self-testing certification method for quantum random number generators is offered in the paper. This method combines different types of certification approaches and is rather secure and efficient. The method is very important for computer science, because it combines the best features from selftesting and device independent methods. It can be used, when the random numbers’ entropy depends on the device and when it does not. In the related researches, these approaches are offered to be used separately, depending on the random number generator. The offered novel certification technology can be properly used, when the device is compromised or spoiled. The technology can successfully detect unintended irregularities, operational problems, abnormalities and problems in the randomization process. The offered mythology assists to eliminate problems related to physical devices. The offered system has the higher certification randomness security and is faster than self-testing approaches. The method is rather efficient because it implements the different certification approaches in the parallel threads. The offered techniques make the offered research must more efficient than the other existing approaches. The corresponding programming simulation is implemented by means of the simulation techniques.


2014 ◽  
Vol 12 ◽  
pp. 75-81 ◽  
Author(s):  
C. Brugger ◽  
S. Weithoffer ◽  
C. de Schryver ◽  
U. Wasenmüller ◽  
N. Wehn

Abstract. Powerful compute clusters and multi-core systems have become widely available in research and industry nowadays. This boost in utilizable computational power tempts people to run compute-intensive tasks on those clusters, either for speed or accuracy reasons. Especially Monte Carlo simulations with their inherent parallelism promise very high speedups. Nevertheless, the quality of Monte Carlo simulations strongly depends on the quality of the employed random numbers. In this work we present a comprehensive analysis of state-of-the-art pseudo random number generators like the MT19937 or the WELL generator used for parallel stream generation in different settings. These random number generators can be realized in hardware as well as in software and help to accelerate the analysis (or simulation) of communications systems. We show that it is possible to generate high-quality parallel random number streams with both generators, as long as some configuration constraints are met. We furthermore depict that distributed simulations with those generator types are viable even to very high degrees of parallelism.


Author(s):  
Dang Nguyen ◽  
Dat Tran ◽  
Wanli Ma ◽  
Dharmendra Sharma

Current electroencephalogram (EEG)-based methods in security have been mainly used for person authentication and identification purposes only. The non-linear and chaotic characteristics of EEG signal have not been taken into account. In this paper, we propose a new method that explores the use of these EEG characteristics in generating random numbers. EEG signal and its wavebands are transformed into bit sequences that are used as random number sequences or as seeds for pseudo-random number generators. EEG signal has the following advantages: 1) it is noisy, complex, chaotic and non-linear in nature, 2) it is very difficult to mimic because similar mental tasks are person dependent, and 3) it is almost impossible to steal because the brain activity is sensitive to the stress and the mood of the person and an aggressor cannot force the person to reproduce his/her mental pass-phrase. Our experiments were conducted on the four EEG datasets: AEEG, Alcoholism, DEAP and GrazA 2008. The randomness of the generated bit sequences was tested at a high level of significance by comprehensive battery of tests recommended by the National Institute of Standard and Technology (NIST) to verify the quality of random number generators, especially in cryptography application. Our experimental results showed high average success rates for all wavebands and the highest rate is 99.17% for the gamma band.  


2014 ◽  
Vol 14 (1) ◽  
pp. 35-46
Author(s):  
Jan Purczyński ◽  
Kamila Bednarz-Okrzyńska

Abstract In this paper a new method of estimating the shape parameter of generalized error distribution (GED), called ‘approximated moment method’, was proposed. The following estimators were considered: the one obtained through the maximum likelihood method (MLM), approximated fast estimator (AFE), and approximated moment method (AMM). The quality of estimator was evaluated on the basis of the value of the relative mean square error. Computer simulations were conducted using random number generators for the following shape parameters: s = 0.5, s = 1.0 (Laplace distribution) s = 2.0 (Gaussian distribution) and s = 3.0.


Sign in / Sign up

Export Citation Format

Share Document