Fracto-Emission from Adhesive Failure

1991 ◽  
pp. 395-423 ◽  
Author(s):  
J. Thomas Dickinson
Keyword(s):  
2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Kai Wei ◽  
Yiwei Chen ◽  
Maojun Li ◽  
Xujing Yang

Carbon fiber-reinforced plastics- (CFRP-) steel single lap joints with regard to tensile loading with two levels of adhesives and four levels of overlap lengths were experimentally analyzed and numerically simulated. Both joint strength and failure mechanism were found to be highly dependent on adhesive type and overlap length. Joints with 7779 structural adhesive were more ductile and produced about 2-3 kN higher failure load than MA830 structural adhesive. Failure load with the two adhesives increased about 147 N and 176 N, respectively, with increasing 1 mm of the overlap length. Cohesion failure was observed in both types of adhesive joints. As the overlap length increased, interface failure appeared solely on the edge of the overlap in 7779 adhesive joints. Finite element analysis (FEA) results revealed that peel and shear stress distributions were nonuniform, which were less severe as overlap length increased. Severe stress concentration was observed on the overlap edge, and shear failure of the adhesive was the main reason for the adhesive failure.


2007 ◽  
Vol 76 (12) ◽  
Author(s):  
Elizabeth M. Lupton ◽  
Frank Achenbach ◽  
Johann Weis ◽  
Christoph Bräuchle ◽  
Irmgard Frank

2010 ◽  
Vol 150-151 ◽  
pp. 626-629
Author(s):  
Sui Lian Luo ◽  
Yang Shan Hu ◽  
Guang Shi ◽  
Hui Ming Pan

It is necessary to improve the adhesion of the cured rubber to a substrate as it is used extensively. It is well known that an improvement in adhesion can be realized by incorporating in the composition a sliane or siloxane. Although the composition provides good adhesion to many kinds of substrates, it has been found that the adhesive bond degrades rapidly under wet conditions. To be solved it, rosin eater was incorprated in the silcone ruber in the paper. Increasing the content of rosin ester could induce a relative high adhesion in hot water. Moreover, when the content of modified rosin pentaerythritol ester was above 4.5 phr, the immersion days in hot water before adhesive failure occured were three times than that of non-additive rosin esters.


2014 ◽  
Author(s):  
Eleir Mundim Bortoleto ◽  
Erika Fernanda Prados ◽  
Vanessa Seriacopi ◽  
Newton Kiyoshi Fukumasu ◽  
Luiz Gustavo Del Bianchi da Silva Lima ◽  
...  

Author(s):  
Hoseinali Mahgoli ◽  
Mahnaz Arshad ◽  
Kamran Rasouli ◽  
Ali Akbar Sobati ◽  
Ahmad Reza Shamshiri

  Objectives: This study aimed to assess the effect of application of two types of zirconia primers on repair bond strength of composite to zirconia ceramic. Materials and Methods: In this in vitro, experimental study, 60 zirconia blocks were divided into five groups and subjected to the application of Z-Prime Plus (ZPP), Monobond Plus (MBP), Porcelain Bonding Resin (PBR), ZPP followed by PBR (ZPP+PBR) and MBP followed by PBR (MBP+PBR). They were then bonded to Z100 composite. The samples were then immersed in water at 37°C for 24 hours, thermocycled for 1000 cycles between 5-55°C and subjected to shear bond strength (SBS) test. The mode of failure was determined under a stereomicroscope and a scanning electron microscope (SEM). Results: The mean bond strength was the highest in ZPP+PBR group followed by MBP+PBR, ZPP, PBR and MBP group (22.29±8.86, 15.75±2.81, 12.02±3.24, 3.60±2.92 and 2.92±1.78 MPa, respectively). The effects of type of zirconia primer and use/no use of PBR on SBS were significant (P<0.05). The frequency of adhesive failure in MBP and PBR groups was significantly higher than that in MBP+PBR and ZPP+PBR groups (P<0.05). The cohesive failure was significantly more frequent in ZPP+PBR group than in ZPP, MBP and PBR groups (P<0.05). Conclusion: Simultaneous application of zirconia primer and PBR is the most efficient technique for repair of all-ceramic zirconia restorations with composite resin.


1987 ◽  
Vol 110 ◽  
Author(s):  
R. N. Leyden ◽  
D. I. Basiulis

AbstractA study was made of the adhesion of insulating polymer coatings under long term exposure to electrical bias. Since a common mode of failure in implanted devices is the penetration of water into poorly adhering insulation/conductor interfaces followed by electrolytic degradation, development of processes, primers, and insulators with good adhesion that resist the effects of water were sought. Polyimide coatings were tested for their ion barrier properties by immersion of insulated comb patterns in saline with 9 V D.C. bias between the comb fingers. Leakage currents, measured over three years exposure, increased from several picoamps initially to several nanoamps in surviving specimens. Subsequent studies showed that dramatic improvements in the moisture durability of the adhesion could be obtained using Hitachi's aluminum chelate type primer. Whereas the peel strength of polyimide on unprimed platinum fell more than 90% after several hours of boiling saline exposure, the peel strength of polyimide coatings on primed surfaces remained at over 80% of their initial values. ESCA analysis of the peel interfaces showed that both aluminum oxide and polyimide remain on the substrate after peeling back the polyimide. This suggests a combination of cohesive and adhesive failure at the primer/polyimide interface. The effects of exposure of the polymer/substrate interfaces (edges) to saline and electrochemical stress were examined by patterning circular openings in the polyimide. A 10 V anodic potential was found to damage adhesion to titanium as far as 75 microns away from the edge. Pulsing at 500 Hz, 1 V peak to peak was found to have no measurable effect in the short term.


Sign in / Sign up

Export Citation Format

Share Document