Studying RNA-Binding Protein Interactions with Target mRNAs in Eukaryotic Cells: Native Ribonucleoprotein Immunoprecipitation (RIP) Assays

Author(s):  
Joseph A. Cozzitorto ◽  
Masaya Jimbo ◽  
Saswati Chand ◽  
Fernando Blanco ◽  
Shruti Lal ◽  
...  
Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 361
Author(s):  
Myeongwoo Jung ◽  
Eun-Kyung Lee

HuD (also known as ELAVL4) is an RNA–binding protein belonging to the human antigen (Hu) family that regulates stability, translation, splicing, and adenylation of target mRNAs. Unlike ubiquitously distributed HuR, HuD is only expressed in certain types of tissues, mainly in neuronal systems. Numerous studies have shown that HuD plays essential roles in neuronal development, differentiation, neurogenesis, dendritic maturation, neural plasticity, and synaptic transmission by regulating the metabolism of target mRNAs. However, growing evidence suggests that HuD also functions as a pivotal regulator of gene expression in non–neuronal systems and its malfunction is implicated in disease pathogenesis. Comprehensive knowledge of HuD expression, abundance, molecular targets, and regulatory mechanisms will broaden our understanding of its role as a versatile regulator of gene expression, thus enabling novel treatments for diseases with aberrant HuD expression. This review focuses on recent advances investigating the emerging role of HuD, its molecular mechanisms of target gene regulation, and its disease relevance in both neuronal and non–neuronal systems.


2005 ◽  
Vol 25 (21) ◽  
pp. 9520-9531 ◽  
Author(s):  
Isabel López de Silanes ◽  
Stefanie Galbán ◽  
Jennifer L. Martindale ◽  
Xiaoling Yang ◽  
Krystyna Mazan-Mamczarz ◽  
...  

ABSTRACT The RNA-binding protein TIA-1 (T-cell intracellular antigen 1) functions as a posttranscriptional regulator of gene expression and aggregates to form stress granules following cellular damage. TIA-1 was previously shown to bind mRNAs encoding tumor necrosis factor alpha (TNF-α) and cyclooxygenase 2 (COX-2), but TIA-1 target mRNAs have not been systematically identified. Here, immunoprecipitation (IP) of TIA-1-RNA complexes, followed by microarray-based identification and computational analysis of bound transcripts, was used to elucidate a common motif present among TIA-1 target mRNAs. The predicted TIA-1 motif was a U-rich, 30- to 37-nucleotide (nt)-long bipartite element forming loops of variable size and a bent stem. The TIA-1 motif was found in the TNF-α and COX-2 mRNAs and in 3,019 additional UniGene transcripts (∼3% of the UniGene database), localizing preferentially to the 3′ untranslated region. The interactions between TIA-1 and target transcripts were validated by IP of endogenous mRNAs, followed by reverse transcription and PCR-mediated detection, and by pulldown of biotinylated RNAs, followed by Western blotting. Further studies using RNA interference revealed that TIA-1 repressed the translation of bound mRNAs. In summary, we report a signature motif present in mRNAs that associate with TIA-1 and provide support to the notion that TIA-1 represses the translation of target transcripts.


2021 ◽  
Author(s):  
Sarah E Cabral ◽  
Kimberly Mowry

RNA localization and biomolecular condensate formation are key biological strategies for organizing the cytoplasm and generating cellular and developmental polarity. While enrichment of RNAs and RNA-binding proteins (RBPs) is a hallmark of both processes, the functional and structural roles of RNA-RNA and RNA-protein interactions within condensates remain unclear. Recent work from our laboratory has shown that RNAs required for germ layer patterning in Xenopus oocytes localize in novel biomolecular condensates, termed Localization bodies (L-bodies). L-bodies are composed of a non-dynamic RNA phase enmeshed in a more dynamic protein-containing phase. However, the interactions that drive the biophysical characteristics of L-bodies are not known. Here, we test the role of RNA-protein interactions using an L-body RNA-binding protein, PTBP3, which contains four RNA-binding domains (RBDs). We find that binding of RNA to PTB is required for both RNA and PTBP3 to be enriched in L-bodies in vivo. Importantly, while RNA binding to a single RBD is sufficient to drive PTBP3 localization to L-bodies, interactions between multiple RRMs and RNA tunes the dynamics of PTBP3 within L-bodies. In vitro, recombinant PTBP3 phase separates into non-dynamic structures in an RNA-dependent manner, supporting a role for RNA-protein interactions as a driver of both recruitment of components to L-bodies and the dynamics of the components after enrichment. Our results point to a model where RNA serves as a concentration-dependent, non-dynamic substructure and multivalent interactions with RNA are a key driver of protein dynamics.


2016 ◽  
Vol 11 (3) ◽  
pp. 616-616 ◽  
Author(s):  
Michael J Moore ◽  
Chaolin Zhang ◽  
Emily Conn Gantman ◽  
Aldo Mele ◽  
Jennifer C Darnell ◽  
...  

2008 ◽  
Vol 37 (1) ◽  
pp. 204-214 ◽  
Author(s):  
Krystyna Mazan-Mamczarz ◽  
Yuki Kuwano ◽  
Ming Zhan ◽  
Elizabeth J. White ◽  
Jennifer L. Martindale ◽  
...  

2014 ◽  
Vol 25 (21) ◽  
pp. 3308-3318 ◽  
Author(s):  
Lan Liu ◽  
Eleni Christodoulou-Vafeiadou ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Xiao ◽  
...  

Inhibition of growth of the intestinal epithelium, a rapidly self-renewing tissue, is commonly found in various critical disorders. The RNA-binding protein HuR is highly expressed in the gut mucosa and modulates the stability and translation of target mRNAs, but its exact biological function in the intestinal epithelium remains unclear. Here, we investigated the role of HuR in intestinal homeostasis using a genetic model and further defined its target mRNAs. Targeted deletion of HuR in intestinal epithelial cells caused significant mucosal atrophy in the small intestine, as indicated by decreased cell proliferation within the crypts and subsequent shrinkages of crypts and villi. In addition, the HuR-deficient intestinal epithelium also displayed decreased regenerative potential of crypt progenitors after exposure to irradiation. HuR deficiency decreased expression of the Wnt coreceptor LDL receptor–related protein 6 (LRP6) in the mucosal tissues. At the molecular level, HuR was found to bind the Lrp6 mRNA via its 3′-untranslated region and enhanced LRP6 expression by stabilizing Lrp6 mRNA and stimulating its translation. These results indicate that HuR is essential for normal mucosal growth in the small intestine by altering Wnt signals through up-regulation of LRP6 expression and highlight a novel role of HuR deficiency in the pathogenesis of intestinal mucosal atrophy under pathological conditions.


PLoS ONE ◽  
2013 ◽  
Vol 8 (12) ◽  
pp. e84060 ◽  
Author(s):  
Kristen J. Holmes ◽  
Daniel M. Klass ◽  
Evan L. Guiney ◽  
Martha S. Cyert

Cell Reports ◽  
2020 ◽  
Vol 30 (10) ◽  
pp. 3353-3367.e7 ◽  
Author(s):  
John D. Laver ◽  
Jimmy Ly ◽  
Allison K. Winn ◽  
Angelo Karaiskakis ◽  
Sichun Lin ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document