scholarly journals RNA-binding protein HuR promotes growth of small intestinal mucosa by activating the Wnt signaling pathway

2014 ◽  
Vol 25 (21) ◽  
pp. 3308-3318 ◽  
Author(s):  
Lan Liu ◽  
Eleni Christodoulou-Vafeiadou ◽  
Jaladanki N. Rao ◽  
Tongtong Zou ◽  
Lan Xiao ◽  
...  

Inhibition of growth of the intestinal epithelium, a rapidly self-renewing tissue, is commonly found in various critical disorders. The RNA-binding protein HuR is highly expressed in the gut mucosa and modulates the stability and translation of target mRNAs, but its exact biological function in the intestinal epithelium remains unclear. Here, we investigated the role of HuR in intestinal homeostasis using a genetic model and further defined its target mRNAs. Targeted deletion of HuR in intestinal epithelial cells caused significant mucosal atrophy in the small intestine, as indicated by decreased cell proliferation within the crypts and subsequent shrinkages of crypts and villi. In addition, the HuR-deficient intestinal epithelium also displayed decreased regenerative potential of crypt progenitors after exposure to irradiation. HuR deficiency decreased expression of the Wnt coreceptor LDL receptor–related protein 6 (LRP6) in the mucosal tissues. At the molecular level, HuR was found to bind the Lrp6 mRNA via its 3′-untranslated region and enhanced LRP6 expression by stabilizing Lrp6 mRNA and stimulating its translation. These results indicate that HuR is essential for normal mucosal growth in the small intestine by altering Wnt signals through up-regulation of LRP6 expression and highlight a novel role of HuR deficiency in the pathogenesis of intestinal mucosal atrophy under pathological conditions.

Biology ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 361
Author(s):  
Myeongwoo Jung ◽  
Eun-Kyung Lee

HuD (also known as ELAVL4) is an RNA–binding protein belonging to the human antigen (Hu) family that regulates stability, translation, splicing, and adenylation of target mRNAs. Unlike ubiquitously distributed HuR, HuD is only expressed in certain types of tissues, mainly in neuronal systems. Numerous studies have shown that HuD plays essential roles in neuronal development, differentiation, neurogenesis, dendritic maturation, neural plasticity, and synaptic transmission by regulating the metabolism of target mRNAs. However, growing evidence suggests that HuD also functions as a pivotal regulator of gene expression in non–neuronal systems and its malfunction is implicated in disease pathogenesis. Comprehensive knowledge of HuD expression, abundance, molecular targets, and regulatory mechanisms will broaden our understanding of its role as a versatile regulator of gene expression, thus enabling novel treatments for diseases with aberrant HuD expression. This review focuses on recent advances investigating the emerging role of HuD, its molecular mechanisms of target gene regulation, and its disease relevance in both neuronal and non–neuronal systems.


FEBS Open Bio ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1964-1976 ◽  
Author(s):  
Nirmala Tilija Pun ◽  
Amrita Khakurel ◽  
Aastha Shrestha ◽  
Sang‐Hyun Kim ◽  
Pil‐Hoon Park

2016 ◽  
Vol 44 (5) ◽  
pp. 1321-1337 ◽  
Author(s):  
Andrew R. Clark ◽  
Jonathan L.E. Dean

Twenty years ago, the first description of a tristetraprolin (TTP) knockout mouse highlighted the fundamental role of TTP in the restraint of inflammation. Since then, work from several groups has generated a detailed picture of the expression and function of TTP. It is a sequence-specific RNA-binding protein that orchestrates the deadenylation and degradation of several mRNAs encoding inflammatory mediators. It is very extensively post-translationally modified, with more than 30 phosphorylations that are supported by at least two independent lines of evidence. The phosphorylation of two particular residues, serines 52 and 178 of mouse TTP (serines 60 and 186 of the human orthologue), has profound effects on the expression, function and localisation of TTP. Here, we discuss the control of TTP biology via its phosphorylation and dephosphorylation, with a particular focus on recent advances and on questions that remain unanswered.


2010 ◽  
Vol 24 (S1) ◽  
Author(s):  
Weibin Zha ◽  
Guangji Wang ◽  
Beth S. Pecora ◽  
Elaine Studer ◽  
Phillip B Hylemon ◽  
...  

2010 ◽  
Vol 222 (3) ◽  
pp. 223-226 ◽  
Author(s):  
David J Elliott ◽  
Prabhakar Rajan

2020 ◽  
Vol 78 (1) ◽  
Author(s):  
Sajad Rashidi ◽  
Kurosh Kalantar ◽  
Celia Fernandez-Rubio ◽  
Enayat Anvari ◽  
Paul Nguewa ◽  
...  

ABSTRACT Leishmaniasis includes a broad spectrum of pathological outcomes in humans caused by protozoan parasites from the genus Leishmania. In recent years, proteomic techniques have introduced novel proteins with critical functions in Leishmania parasites. Based on our report of a Chitin binding protein (CBP) in our previous immunoproteomic study, this article suggests that CBP might be an RNA binding protein (RBP) in Leishmania parasites. RBPs, as key regulatory factors, have a role in post-transcriptional gene regulation. The presence of RBPs in Leishmania parasites has not been considered so far; however, this study aims to open a new venue regarding RBPs in Leishmania parasites. Confirming CBP as an RBP in Leishmania parasites, exploring other RBPs and their functions might lead to interesting issues in leishmaniasis. In fact, due to the regulatory role of RBPs in different diseases including cancers and their further classification as therapeutic targets, the emerging evaluation of CBP and RBPs from Leishmania parasites may allow the discovery of novel and effective drugs against leishmaniasis.


RNA Biology ◽  
2020 ◽  
pp. 1-19 ◽  
Author(s):  
Gunhild Sommer ◽  
Tilman Heise

2004 ◽  
Vol 186 (11) ◽  
pp. 3355-3362 ◽  
Author(s):  
Janne K. Christiansen ◽  
Marianne H. Larsen ◽  
Hanne Ingmer ◽  
Lotte Søgaard-Andersen ◽  
Birgitte H. Kallipolitis

ABSTRACT In gram-negative bacteria, the RNA-binding protein Hfq has emerged as an important regulatory factor in a variety of physiological processes, including stress resistance and virulence. In Escherichia coli, Hfq modulates the stability or the translation of mRNAs and interacts with numerous small regulatory RNAs. Here, we studied the role of Hfq in the stress tolerance and virulence of the gram-positive food-borne human pathogen Listeria monocytogenes. We present evidence that Hfq is involved in the ability of L. monocytogenes to tolerate osmotic and ethanol stress and contributes to long-term survival under amino acid-limiting conditions. However, Hfq is not required for resistance to acid and oxidative stress. Transcription of hfq is induced under various stress conditions, including osmotic and ethanol stress and at the entry into the stationary growth phase, thus supporting the view that Hfq is important for the growth and survival of L. monocytogenes in harsh environments. The stress-inducible transcription of hfq depends on the alternative sigma factor σB, which controls the expression of numerous stress- and virulence-associated genes in L. monocytogenes. Infection studies showed that Hfq contributes to pathogenesis in mice, yet plays no role in the infection of cultured cell lines. This study provides, for the first time, information on the role of Hfq in the stress tolerance and virulence of a gram-positive pathogen.


Sign in / Sign up

Export Citation Format

Share Document