Immobilized Magnetic Beads-Based Multi-Target Affinity Selection Coupled with HPLC-MS for Screening Active Compounds from Traditional Chinese Medicine and Natural Products

Author(s):  
Yaqi Chen ◽  
Zhui Chen ◽  
Yi Wang
2020 ◽  
Vol 14 (1) ◽  
pp. 21-39
Author(s):  
Anupama Singh ◽  
Vandana Kharb ◽  
Vikas Anand Saharan

Fast Dissolving/Disintegrating Dosage Forms (FDDFs) are a group of dosage forms which dissolve or disintegrate quickly, leading to fast distribution of active ingredients at the site of administration; thereby providing ease of oral ingestion of solid unit dosage forms and have the potential to enhance transmucosal absorption. With time, the use of FDDFs in alternative systems has significantly increased. Homeopathic systems and traditional Chinese medicine have embraced FDDFs for the delivery of active compounds. Most of the patents in this area are from China or by the Chinese innovators. In Europe and US, FDDFs have been extensively studied for the delivery of natural active compounds. It was fascinating to know that some new dosage forms and new routes of delivering active compounds are also making their way to the family of FDDFs. The dose of active compound, size of dosage forms, standardization of extracts, polyherbal mixtures, stability of active compounds, safety, efficacy and pharmacokinetics are challenging issues for developing FDDF herbal formulations or phytopharmaceuticals.


2017 ◽  
Vol 80 (10) ◽  
pp. 1517-1525 ◽  
Author(s):  
Cheng Tang ◽  
Ruizhi Mao ◽  
Fang Liu ◽  
Yaming Yu ◽  
Liang Xu ◽  
...  

2016 ◽  
Vol 11 (11) ◽  
pp. 1934578X1601101 ◽  
Author(s):  
Di Yang ◽  
Wanwan Jia ◽  
Yi Zhun Zhu

Herba Leonuri, also named Chinese Motherwort, has been extensively investigated as an effective agent on the uterus system. Our group has been studying the natural products of Herba Leonuri for several years, and during this period, many biological activities of the drug were recognized. Leonurine (4-guanidino- N-butyl-syringate) is an alkaloid present in Herba Leonuri. Recently, growing evidence has highlighted the therapeutic potential of leonurine in multiple diseases, especially cardiovascular. In this review, we discuss the biological activities of leonurine, as well as recent advances involving this alkaloid.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Jiayan Wu ◽  
Shengkun Hong ◽  
Xiankuan Xie ◽  
Wangmi Liu

Objective. Dipsaci Radix (DR) has been used to treat fracture and osteoporosis. Recent reports have shown that myeloid cells from bone marrow can promote the proliferation of lung cancer. However, the action and mechanism of DR has not been well defined in lung cancer. The aim of the present study was to define molecular mechanisms of DR as a potential therapeutic approach to treat lung cancer. Methods. Active compounds of DR with oral bioavailability ≥30% and drug-likeness index ≥0.18 were obtained from the traditional Chinese medicine systems pharmacology database and analysis platform. The potential target genes of the active compounds and bone were identified by PharmMapper and GeneCards, respectively. The compound-target network and protein-protein interaction network were built by Cytoscape software and Search Tool for the Retrieval of Interacting Genes webserver, respectively. GO analysis and pathway enrichment analysis were performed using R software. Results. Our study demonstrated that DR had 6 active compounds, including gentisin, sitosterol, Sylvestroside III, 3,5-Di-O-caffeoylquinic acid, cauloside A, and japonine. There were 254 target genes related to these active compounds as well as to bone. SRC, AKT1, and GRB2 were the top 3 hub genes. Metabolisms and signaling pathways associated with these hub genes were significantly enriched. Conclusions. This study indicated that DR could exhibit the anti-lung cancer effect by affecting multiple targets and multiple pathways. It reflects the traditional Chinese medicine characterized by multicomponents and multitargets. DR could be considered as a candidate for clinical anticancer therapy by regulating bone physiological functions.


2020 ◽  
Vol 8 ◽  
Author(s):  
Xuejun Jiang ◽  
Mei Lin ◽  
Jianwen Huang ◽  
Mulan Mo ◽  
Houhe Liu ◽  
...  

Traditional Chinese medicine (TCM) has been used to treat disorders in China for ~1,000 years. Growing evidence has shown that the active ingredients from TCM have antibacterial, antiproliferative, antioxidant, and apoptosis-inducing features. However, poor solubility and low bioavailability limit clinical application of active compounds from TCM. “Nanoformulations” (NFs) are novel and advanced drug-delivery systems. They show promise for improving the solubility and bioavailability of drugs. In particular, “smart responsive NFs” can respond to the special external and internal stimuli in targeted sites to release loaded drugs, which enables them to control the release of drug within target tissues. Recent studies have demonstrated that smart responsive NFs can achieve targeted release of active compounds from TCM at disease sites to increase their concentrations in diseased tissues and reduce the number of adverse effects. Here, we review “internal stimulus–responsive NFs” (based on pH and redox status) and “external stimulus–responsive NFs” (based on light and magnetic fields) and focus on their application for active compounds from TCM against tumors and infectious diseases, to further boost the development of TCM in modern medicine.


2013 ◽  
Vol 2013 ◽  
pp. 1-11 ◽  
Author(s):  
Mengzhu Xue ◽  
Shoude Zhang ◽  
Chaoqian Cai ◽  
Xiaojuan Yu ◽  
Lei Shan ◽  
...  

As the major issue to limit the use of drugs, drug safety leads to the attrition or failure in clinical trials of drugs. Therefore, it would be more efficient to minimize therapeutic risks if it could be predicted before large-scale clinical trials. Here, we integrated a network topology analysis with cheminformatics measurements on drug information from the DrugBank database to detect the discrepancies between approved drugs and withdrawn drugs and give drug safety indications. Thus, 47 approved drugs were unfolded with higher similarity measurements to withdrawn ones by the same target and confirmed to be already withdrawn or discontinued in certain countries or regions in subsequent investigations. Accordingly, with the 2D chemical fingerprint similarity calculation as a medium, the method was applied to predict pharmacovigilance for natural products from an in-house traditional Chinese medicine (TCM) database. Among them, Silibinin was highlighted for the high similarity to the withdrawn drug Plicamycin although it was regarded as a promising drug candidate with a lower toxicity in existing reports. In summary, the network approach integrated with cheminformatics could provide drug safety indications effectively, especially for compounds with unknown targets or mechanisms like natural products. It would be helpful for drug safety surveillance in all phases of drug development.


Sign in / Sign up

Export Citation Format

Share Document