Activation-Induced Cytidine Deaminase and Switched Memory B Cells as Predictors of Effective In Vivo Responses to the Influenza Vaccine

Author(s):  
Daniela Frasca ◽  
Alain Diaz ◽  
Bonnie B. Blomberg
Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 1538-1538
Author(s):  
Franziska Auer ◽  
Deborah Ingenhag ◽  
Isidro Sánchez-García ◽  
Arndt Borkhardt ◽  
Julia Hauer

Abstract Introduction: Activation induced cytidine deaminase (AID) mediates somatic hypermutation and class switch recombination in splenic germinal center B cells and is implicated in retaining central B cell tolerance in the bone marrow (BM) (Cantaert et al., Immunity, 2015). Moreover, there is recent in vitro evidence that AID is upregulated in precursor B cells after exposure to LPS, contributing to the clonal evolution of pB-ALL (Swaminathan et al., Nat Immunol, 2015) (Greaves M. and Müschen M., Cancer Discovery, 2015). These studies were carried out in pre-BII / early immature B cells, which are the first B cell compartments with detectable intrinsic AID expression. However a functional role of AID in pro-B cells is still controversially discussed and a functional role of AID in leukemogenesis remains speculative. We designed an in vivo model which allowed us the investigation of intrinsic Aid expression in tumor prone pro-B cells. Our data indicate that Aid is a gate keeper at the early stage of B cell development and its loss of function facilitates the development of pB-ALL. Methods: We crossed a Rag1 deficient tumor prone mouse model (p19Arf-/-/Rag1-/-) (Hauer et al., Blood, 2011) on an Aid deficient background to obtain Aid knockout (p19Arf-/-/Rag1-/-/Aid-/-) and heterozygous (p19Arf-/-/Rag1-/-/Aid+/-) mice. Healthy and diseased mice were characterized by immunohistochemistry, Flow cytometric analysis, genome and transcriptome profiling. Cell cycle analysis was performed with pro-B cells of healthy mice. Results: P19Arf-/-Rag1-/- mice display a B cell developmental arrest at the pro-B stage and develop pB-ALL at an incidence of 26 %. Surprisingly, an additional loss of Aid in these cells accelerated the pB-ALL incidence to 98 % (44/45, median onset 25 weeks). Moreover our model reproduces the dose dependent effect of AID on regulating B cell tolerance in humans, since Aid+/- mice on the same background displayed significant disease reduction (83 %, 15/18, median onset 33 weeks, Mantel-Cox Test p=0.0175). The leukemia displayed a pro-B cell phenotype (CD19+B220+ckit+IgM-) and manifested with splenomegaly, dissemination of blast cells to the BM, peripheral blood (PB) and spleen. Pro-B tumors from p19Arf-/-Rag1-/- mice expressed Aid on transcript (qRT-PCR) and protein (western blot) level, indicating that Aid expression is not restricted to CD19+ BM cells with co-expression of a functional IgM heavy chain product but rather occurs at earlier stages of B cell development. Again this effect was dose dependent, since in pB-ALLs of p19Arf-/-Rag1-/-Aid-/+ mice Aid expression was significantly reduced. To identify the second hit we performed whole exome sequencing of murine tumors, which revealed accumulation of recurrent somatic Jak3 (R653H, V670A) and Dnm2 (G397R) mutations. To extend these findings further, Sanger sequencing of these regions displayed a mutational pattern of somatic Jak3 mutations in 60 % of Aid+/- and 80 % of Aid-/-pB-ALLs, while Dnm2 was somatically mutated in 96 % of all pB-ALLs analyzed. The detected Jak3 variants are known to induce a constitutive active downstream signaling. Loss of function mutations in DNM2 can increase the IL-7R cell surface expression, which highlight the relevance of the IL7R signaling in the context of tumor progression. However we did not observe detectable Aid expression in healthy pro-B cells of p19Arf-/-Rag1-/- animals in line with findings from Cantaert et al. On the other hand loss of Aid expression accelerates the repopulation capacity starting at the pro-B cell compartment (Kuraoka et al., Proc Natl Acad Sci, 2011). In our model Aid loss produces a dose dependent increase in proliferation and BrdU assays of B220+ sorted pro-B cells of healthy mice from the different cohorts (30 % cells in S-Phase in p19Arf-/-Rag1-/-compared to 50 % S-Phase with additional Aid loss), although Aid expression is below the detection limit. Conclusion: We present in vivo evidence that Aid has a gate keeper function in pro-B cells, which allows aberrant IL-7 dependent pro-B cells without a functional receptor to be eliminated through Aid induction. This further extends the observation that Aid mediates the clearance of autoreactive early immature B-cell clones and is required to prevent pB-ALL. In this regard Aid overexpression but also loss of Aid expression can facilitate pB-ALL development. Disclosures No relevant conflicts of interest to declare.


2001 ◽  
Vol 194 (3) ◽  
pp. 375-378 ◽  
Author(s):  
Eric Meffre ◽  
Nadia Catalan ◽  
Françoise Seltz ◽  
Alain Fischer ◽  
Michel C. Nussenzweig ◽  
...  

High-affinity antibodies produced by memory B cells differ from antibodies produced in naive B cells in two respects. First, many of these antibodies show somatic hypermutation, and second, the repertoire of antibodies expressed in memory responses is highly selected. To determine whether somatic hypermutation is responsible for the shift in the antibody repertoire during affinity maturation, we analyzed the immunoglobulin lambda light chain (Igλ) repertoire expressed by naive and antigen-selected memory B cells in humans. We found that the Igλ repertoire differs between naive and memory B cells and that this shift in the repertoire does not occur in the absence of somatic hypermutation in patients lacking activation-induced cytidine deaminase (AID). Our work suggests that somatic hypermutation makes a significant contribution to shaping the antigen-selected antibody repertoire in humans.


2011 ◽  
Vol 208 (13) ◽  
pp. 2599-2606 ◽  
Author(s):  
Whitney E. Purtha ◽  
Thomas F. Tedder ◽  
Syd Johnson ◽  
Deepta Bhattacharya ◽  
Michael S. Diamond

Memory B cells (MBCs) and long-lived plasma cells (LLPCs) persist after clearance of infection, yet the specific and nonredundant role MBCs play in subsequent protection is unclear. After resolution of West Nile virus infection in mice, we demonstrate that LLPCs were specific for a single dominant neutralizing epitope, such that immune serum poorly inhibited a variant virus that encoded a mutation at this critical epitope. In contrast, a large fraction of MBC produced antibody that recognized both wild-type (WT) and mutant viral epitopes. Accordingly, antibody produced by the polyclonal pool of MBC neutralized WT and variant viruses equivalently. Remarkably, we also identified MBC clones that recognized the mutant epitope better than the WT protein, despite never having been exposed to the variant virus. The ability of MBCs to respond to variant viruses in vivo was confirmed by experiments in which MBCs were adoptively transferred or depleted before secondary challenge. Our data demonstrate that class-switched MBC can respond to variants of the original pathogen that escape neutralization of antibody produced by LLPC without a requirement for accumulating additional somatic mutations.


2015 ◽  
Vol 17 (1) ◽  
Author(s):  
Zafar Mahmood ◽  
Khalid Muhammad ◽  
Marc Schmalzing ◽  
Petra Roll ◽  
Thomas Dörner ◽  
...  

2000 ◽  
Vol 191 (7) ◽  
pp. 1149-1166 ◽  
Author(s):  
Louise J. McHeyzer-Williams ◽  
Melinda Cool ◽  
Michael G. McHeyzer-Williams

The mechanisms that regulate B cell memory and the rapid recall response to antigen remain poorly defined. This study focuses on the rapid expression of B cell memory upon antigen recall in vivo, and the replenishment of quiescent B cell memory that follows. Based on expression of CD138 and B220, we reveal a unique and major subtype of antigen-specific memory B cells (B220−CD138−) that are distinct from antibody-secreting B cells (B220+/−CD138+) and B220+CD138− memory B cells. These nonsecreting somatically mutated B220− memory responders rapidly dominate the splenic response and comprise >95% of antigen-specific memory B cells that migrate to the bone marrow. By day 42 after recall, the predominant quiescent memory B cell population in the spleen (75–85%) and the bone marrow (>95%) expresses the B220− phenotype. Upon adoptive transfer, B220− memory B cells proliferate to a lesser degree but produce greater amounts of antibody than their B220+ counterparts. The pattern of cellular differentiation after transfer indicates that B220− memory B cells act as stable self-replenishing intermediates that arise from B220+ memory B cells and produce antibody-secreting cells on rechallenge with antigen. Cell surface phenotype and Ig isotype expression divide the B220− compartment into two main subsets with distinct patterns of integrin and coreceptor expression. Thus, we identify new cellular components of B cell memory and propose a model for long-term protective immunity that is regulated by a complex balance of committed memory B cells with subspecialized immune function.


2003 ◽  
Vol 198 (9) ◽  
pp. 1427-1437 ◽  
Author(s):  
Hiroyuki Gonda ◽  
Manabu Sugai ◽  
Yukiko Nambu ◽  
Tomoya Katakai ◽  
Yasutoshi Agata ◽  
...  

Pax5 activity is enhanced in activated B cells and is essential for class switch recombination (CSR). We show that inhibitor of differentiation (Id)2 suppresses CSR by repressing the gene expression of activation-induced cytidine deaminase (AID), which has been shown to be indispensable for CSR. Furthermore, a putative regulatory region of AID contains E2A- and Pax5-binding sites, and the latter site is indispensable for AID gene expression. Moreover, the DNA-binding activity of Pax5 is decreased in Id2-overexpressing B cells and enhanced in Id2−/− B cells. The kinetics of Pax5, but not E2A, occupancy to AID locus is the same as AID expression in primary B cells. Finally, enforced expression of Pax5 induces AID transcription in pro–B cell lines. Our results provide evidence that the balance between Pax5 and Id2 activities has a key role in AID gene expression.


2008 ◽  
Vol 205 (10) ◽  
pp. 2199-2206 ◽  
Author(s):  
Virginia G. de Yébenes ◽  
Laura Belver ◽  
David G. Pisano ◽  
Susana González ◽  
Aranzazu Villasante ◽  
...  

Activated B cells reshape their primary antibody repertoire after antigen encounter by two molecular mechanisms: somatic hypermutation (SHM) and class switch recombination (CSR). SHM and CSR are initiated by activation-induced cytidine deaminase (AID) through the deamination of cytosine residues on the immunoglobulin loci, which leads to the generation of DNA mutations or double-strand break intermediates. As a bystander effect, endogenous AID levels can also promote the generation of chromosome translocations, suggesting that the fine tuning of AID expression may be critical to restrict B cell lymphomagenesis. To determine whether microRNAs (miRNAs) play a role in the regulation of AID expression, we performed a functional screening of an miRNA library and identified miRNAs that regulate CSR. One such miRNA, miR-181b, impairs CSR when expressed in activated B cells, and results in the down-regulation of AID mRNA and protein levels. We found that the AID 3′ untranslated region contains multiple putative binding sequences for miR-181b and that these sequences can be directly targeted by miR-181b. Overall, our results provide evidence for a new regulatory mechanism that restricts AID activity and can therefore be relevant to prevent B cell malignant transformation.


1999 ◽  
Vol 274 (26) ◽  
pp. 18470-18476 ◽  
Author(s):  
Masamichi Muramatsu ◽  
V. S. Sankaranand ◽  
Shrikant Anant ◽  
Manabu Sugai ◽  
Kazuo Kinoshita ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document