scholarly journals miR-181b negatively regulates activation-induced cytidine deaminase in B cells

2008 ◽  
Vol 205 (10) ◽  
pp. 2199-2206 ◽  
Author(s):  
Virginia G. de Yébenes ◽  
Laura Belver ◽  
David G. Pisano ◽  
Susana González ◽  
Aranzazu Villasante ◽  
...  

Activated B cells reshape their primary antibody repertoire after antigen encounter by two molecular mechanisms: somatic hypermutation (SHM) and class switch recombination (CSR). SHM and CSR are initiated by activation-induced cytidine deaminase (AID) through the deamination of cytosine residues on the immunoglobulin loci, which leads to the generation of DNA mutations or double-strand break intermediates. As a bystander effect, endogenous AID levels can also promote the generation of chromosome translocations, suggesting that the fine tuning of AID expression may be critical to restrict B cell lymphomagenesis. To determine whether microRNAs (miRNAs) play a role in the regulation of AID expression, we performed a functional screening of an miRNA library and identified miRNAs that regulate CSR. One such miRNA, miR-181b, impairs CSR when expressed in activated B cells, and results in the down-regulation of AID mRNA and protein levels. We found that the AID 3′ untranslated region contains multiple putative binding sequences for miR-181b and that these sequences can be directly targeted by miR-181b. Overall, our results provide evidence for a new regulatory mechanism that restricts AID activity and can therefore be relevant to prevent B cell malignant transformation.

Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 223-223
Author(s):  
Laura Pasqualucci ◽  
Mara Compagno ◽  
Tongwei Mo ◽  
Paula Smith ◽  
Herbert C. Morse ◽  
...  

Abstract Most B cell non-Hodgkin’s lymphomas (B-NHL) derive from germinal center (GC) B cells and their pathogenesis is associated with the accumulation of distinct genetic lesions, including chromosomal translocations and a more recently identified mechanism of genomic instability, termed aberrant somatic hypermutation. These alterations are thought to be due to mistakes occurring during two GC-associated immunoglobulin (Ig) genes remodeling processes: class switch recombination (CSR) and somatic hypermutation (SHM). However, this model has never been formally proven. To conclusively investigate the role of CSR and SHM in the pathogenesis of B-NHL, we examined whether lymphoma development in mice requires the function of activation induced cytidine deaminase (AID), a DNA editing enzyme expressed specifically in GC and activated B cells and essential for both processes. Three transgenic mouse models were generated by crossing lymphoma-prone mice (λMYC, λMYC/IμHABCL6 and IμHABCL6) with mice (AID−/−) that are unable to undergo both SHM and CSR. The λMYC mice develop a diffusely infiltrating monoclonal proliferation of pre-GC origin, with unmutated IgV genes and lack of BCL6 expression, and therefore presumably independent from AID-associated DNA remodeling events. Conversely, lymphomas in λMYC/IμHABCL6 and IμHABCL6 mice recapitulate GC/post GC-derived malignancies, in that the former display somatically mutated IgV genes and upregulation of post-GC markers (CD138) in most of the cases, while the latter develop a splenic lymphoproliferative syndrome that culminates, past 12 months of age, in clonal B cell lymphomas with DLBCL morphology and somatically mutated IgV genes (~70% of the animals) (Cattoretti et al., Cancer Cell 7:445–455, 2005). Mice were monitored for tumor incidence and survival, and a combination of histologic, immunophenotypic and gene expression profiling analysis was used for tumor characterization. As expected, no significant differences in event-free survival and lymphoma type were observed between AID-proficient and AID-deficient λMYC mice, in agreement with their pre-GC derivation. Conversely, a phenotypic shift of the tumor was observed in λMYC/IμHABCL6 mice when bred into an AID−/− background, with >80% of the cases (N=21/26) reverting to a pre-GC phenotype (loss of GC/post GC markers) undistinguishable from that of the λMYC and λMYC/AID−/− mice. Gene expression profile analysis on representative cases (N=10 λMYC/IμHABCL6 and 5 each for λMYC, λMYC/AIDKO, λMYC/IμHABCL6/AIDKO) confirmed significant phenotypic similarities between pre-GC derived λMYC lymphomas and the λMYC/IμHABCL6/AID −/− lymphomas, which co-segregated in a separate cluster from λMYC/IμHABCL6 tumors. Analogously, a significant reduction in DLBCL frequency was observed in the IμHABCL6/AIDKO cohort as compared to IμHABCL6 mice (N= 4/19, 21% vs 8/14, 57%; p=0.03). Taken together, these results indicate that GC-derived lymphomas cannot develop in the absence of AID, thereby providing direct support to the notion that AID-mediated mistakes in antigen receptor gene modification events (CSR and SHM) represent major contributors to B-NHL pathogenesis.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2412-2412
Author(s):  
Cristina Bertinetti ◽  
Julia Weiss ◽  
Hendrik Veelken

Abstract Follicular Lymphomas (FL) are considered the neoplastic counterpart of germinal center (GC) B cells due to their characteristic growth pattern, composition of a mixture of centroblasts and centrocytes, a GC gene expression profile, and ongoing acquisition of somatic mutations of their immunoglobulin (Ig) genes. A minority of FL has undergone Ig class switching from IgM to IgG or IgA at diagnosis. Based on PCR-mediated cloning of Ig heavy chain (IgH) genes with a success rate of 73%, Aarts et al. (Blood, 2000) have reported from an analysis of 30 FL cases that isotype-switched FL harbor significantly more IgH mutations than IgM-expressing cases, suggesting that the somatic hypermutation (SHM) machinery remains fully active even after class switch recombination (CSR) in FL. We have readdressed this question in 38 FL cases and compared their SHM pattern to 31 lymphomas of other types. 16 of these controls expressed IgM (including 5 MCL, 4 DLCL, and 3 CLL) and 15 IgG/A (including 13 myelomas). The Ig isotype and light chain (IgL) restriction of the lymphoma cells were identified by flow cytometry, and both clonal IgH and IgL transcripts were cloned by anchored PCR. This approach has a success rate of 98% (Bertinetti et al., Eur. J. Haematol., 2006). At the DNA (Table 1 and 2) and amino acid sequence level (not shown), the SHM frequency did not differ significantly between the 23 IgM-expressing and 15 class-switched FL. IgM-expressing FL, however, had more SHM than unswitched non-FL cases. In contrast, class-switched FL did not harbor more mutations than switched non-FL tumors. Although the molecular mechanisms are not yet fully understood, activation-induced cytidine deaminase (AID) has been identifed as an essential enzyme required for both SHM and CSR and is frequently expressed by GC lymphomas. To investigate whether downregulation of AID might be responsible for cessation of SHM after CSR in FL, we measured the AID expression in the FL biopsies by a semiquantitative RT-PCR. In contrast to our hypothesis, AID transcripts were present in both IgM- and IgG/A-expressing FL, and the median AID expression was even significantly higher in switched FL (p=0.014). These data indicate that despite their arrest in the GC maturation stage, FL behave similar to normal B cells by downregulating the SHM machinery after CSR. In addition, the data are consistent with a model in which intermediate expression of AID is sufficient for SHM, but higher levels are required to initiate CSR in FL. Subsequent cessation of SHM might be attributable to subcellular relocalisation of AID or decreased activity of AID cofactors, such as single-stranded binding protein (RPA) or protein kinase A (PKA). Median (range) of VH Mutations IgM IgG/A IgM versus IgG/A Comparison of mutation frequency of the clonal VH gene between non-switched and switched FL cases and between FL and non-FL cases FL (n=38) 32 (8–106) 38 (12–58) p=0.4 Non-FL (n=31) 18 (6–57) 25 (13–65) p=0.07 FL versus non-FL p=0.006 p=0.11 Median (range) of VL Mutations IgM IgG/A IgM versus IgG/A Comparison of mutation frequency of the clonal VL gene between non-switched and switched FL cases and between FL and non-FL cases FL (n=38) 14 (0–38) 18 (5–31) p=0.36 Non-FL (n=31) 5.5 (0–25) 14 (5–53) p=0.001 FL versus non-FL p=0.002 p=0.32


Blood ◽  
2004 ◽  
Vol 104 (10) ◽  
pp. 3318-3325 ◽  
Author(s):  
Laura Pasqualucci ◽  
Roberta Guglielmino ◽  
Jane Houldsworth ◽  
Jessica Mohr ◽  
Said Aoufouchi ◽  
...  

Abstract Somatic hypermutation (SHM) targets primarily the immunoglobulin variable region (IgV) genes in germinal center (GC) B cells, thereby allowing antibody affinity maturation. A malfunction of SHM, termed aberrant somatic hypermutation (ASHM), was found in about 50% of diffuse large B-cell lymphomas (DLBCLs), leading to mutations in the 5′ sequences of multiple genes, including oncogenes. Although the SHM mechanism is largely unknown, it was shown to require the activation-induced cytidine deaminase (AID) gene. AID mRNA is expressed in GC B cells and GC-derived lymphomas, but the pattern of expression of the AID protein is not known. Using 2 specific antibodies, here we show that the AID protein can be detected in GC centroblasts and their transformed counterpart (Burkitt lymphoma) but not in pre-GC B cells and post-GC neoplasms, including B-cell chronic lymphocytic leukemia and multiple myeloma. DLBCLs displayed variable levels of AID expression, which did not correlate with IgV ongoing hypermutation, ASHM, or disease subtype. Finally, both in normal and malignant B cells the AID protein appeared predominantly localized in the cytoplasm. These results indicate that the AID protein is specifically expressed in normal and transformed GC B cells; nonetheless, its predominantly cytoplasmic localization suggests that additional mechanisms may regulate its function and may be altered during lymphomagenesis. (Blood. 2004;104:3318-3325)


2009 ◽  
Vol 37 (3) ◽  
pp. 561-568 ◽  
Author(s):  
Uttiya Basu ◽  
Andrew Franklin ◽  
Bjoern Schwer ◽  
Hwei-Ling Cheng ◽  
Jayanta Chaudhuri ◽  
...  

Human and mouse Ig genes are diversified in mature B-cells by distinct processes known as Ig heavy-chain CSR (class switch recombination) and Ig variable-region exon SHM (somatic hypermutation). These DNA-modification processes are initiated by AID (activation-induced cytidine deaminase), a DNA cytidine deaminase predominantly expressed in activated B-cells. AID is post-transcriptionally regulated via multiple mechanisms, including microRNA regulation, nucleocytoplasmic shuttling, ubiquitination and phosphorylation. Among these regulatory processes, AID phosphorylation at Ser38 has been a focus of particularly intense study and debate. In the present paper, we discuss recent biochemical and mouse genetic studies that begin to elucidate the functional significance of AID Ser38 phosphorylation in the context of the evolution of this mode of AID regulation and the potential roles that it may play in activated B-cells during a normal immune response.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 22-22 ◽  
Author(s):  
April Chiu ◽  
Xugang Qiao ◽  
Bing He ◽  
Elizabeth Hyjjek ◽  
Joong Lee ◽  
...  

Abstract Introduction. B cell-activating factor of the TNF family (BAFF) and a proliferation-inducing ligand (APRIL), a BAFF-related molecule, play a key role in the survival and proliferation of mature B cells. In addition, BAFF and APRIL cooperate with IL-4 to induce class switch DNA recombination (CSR) from IgM (or IgG) to IgG, IgA or IgE. This process requires activation-induced-cytidine deaminase (AID), a DNA-editing enzyme involved also in Ig somatic hypermutation and lymphomagenesis. BAFF and APRIL are usually produced by myeloid cells, including dendritic cells, macrophages and granulocytes, and engage three receptors preferentially expressed on B cells, including transmembrane activator and calcium modulator and cyclophylin ligand interactor (TACI), B cell maturation antigen (BCMA), and BAFF receptor (BAFF-R). Our previous studies show that BAFF and APRIL are EBV-inducible molecules implicated in B cell non-Hodgkin’s lymphoma (NHL). The scope of the present studies was to elucidate the expression and function of BAFF, APRIL, TACI, BCMA and BAFF-R in Hodgkin lymphoma (HL). Methods. Tissue sections from 5 primary EBV+ HL cases and 5 primary EBV− HL cases were analyzed for BAFF, APRIL, TACI, BCMA, and BAFF-R expression through immunohistochemistry. RS cells from 6 primary cases were microdissected and analyzed for the expression of AID and CSR byproducts by RT-PCR. The expression of BAFF, APRIL, TACI, BCMA, BAFF-R, AID, and CSR byproducts was also analyzed in 5 HL cell lines cultured in the presence or absence of recombinant BAFF, APRIL and cytokines as previously described1,2,3. Results. We found that the reactive infiltrate of primary HL tumors comprises non-malignant elements, such as macrophages, granulocytes and plasma cells, expressing BAFF and APRIL. Also a variable proportion of malignant CD30+ Reed-Sternberg (RS) cells from both EBV+ and EBV− HL cases express BAFF and APRIL. Unlike NHL B cells, which usually express BAFF-R, primary RS cells and RS cell lines lack BAFF-R, but express TACI and BCMA. In the presence of BAFF or APRIL, RS cell lines are rescued from spontaneous or induced apoptosis. This effect is associated with activation of NF-κB through a classical pathway. Increased RS cell survival is also associated with up-regulation of the pro-survival BCL-2 and BCL-XL proteins, and down-regulation of the pro-apoptotic BAX protein. Finally, in the presence of BAFF or APRIL and IL-4, RS cell lines up-regulate AID expression and increase their spontaneous CSR activity. Of note, AID expression extends to primary RS cells and is associated with ongoing CSR. Conclusions. Our studies indicate that BAFF and APRIL stimulate malignant RS cells through both autocrine and paracrine pathways. Engagement of TACI and BCMA receptors by BAFF and APRIL may enhance the expansion of RS cells by attenuating apoptosis through a mechanism involving NF-κB and BCL family proteins. By up-regulating AID, signals emanating from TACI and BCMA receptors might also introduce genomic instability. Finally, considering that TACI, BCMA and AID are B cell-specific molecules and that CSR is a process confined to B cells, our findings consolidate the notion that RS cells derive from a B cell precursor.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 2397-2397
Author(s):  
Gabriel Brisou ◽  
Laurent Jallades ◽  
Alexandra Traverse-Glehen ◽  
Francoise Berger ◽  
Aurélie Verney ◽  
...  

Abstract Abstract 2397 B cells can undergo at least two differentiation pathways, dependent of T cells or not, starting from follicular or marginal zone B cells respectively. The T-independent response, less understood than the germinal center reaction, is triggered by specific antigens and arises from marginal zone B cells. During this development, some B cells undergo somatic hypermutation (SHM) and class switch recombination (CSR), triggered by the same DNA editing enzyme called Activation Induced Cytidine Deaminase (AID). The splenic marginal zone lymphoma (SMZL) is a rare lymphoproliferative disorder characterized by a clonal expansion of B cells in the marginal zone of the spleen. These B-cells underwent SHM in roughly 60% of the cases but nearly none underwent CSR. These observations suggest that tumor clones originate from a particular activated B cell subset not transiting through the germinal center. In order to confirm this hypothesis, we focused our work on the status and impact of AID in this disease and worked on purified B cells extracted from spleen of well-characterized SMZL cases. We determined AID status by quantitative RT-PCR analysis on 27 SMZL samples and compared it with 5 controls. In the SMZL group the relative level of expression of AID is heterogeneous but two subgroups could be distinguished: one considered as expressing AID (14 cases out of the 27 analyzed), the remaining considered as not expressing AID. When we compared AID expression rate with occurrence of SHM and CSR, no clear correlation between AID expression and presence of SHM or CSR could be observed suggesting that AID, when expressed, is dysfunctional. To address this hypothesis, we first analyzed AID protein by immunohistochemistry and a good correlation between IHC signal and AID mRNA expression level has been observed. As AID gene was not mutated, we next focused our work on AID mRNA splicing variants as these variants exhibit different functions according to the domain of the protein they contain in a murine model. We found that SMZL B cells express various splicing variants of AID mRNA, some of those variants corresponding to the full length isoform (n = 6/17), and other variants corresponding to AID-ΔE4a (n = 2/17) or AID-ΔE4 (n = 7/17) isoforms known to be expressed in normal germinal center B cells as well as in Chronic Lymphocytic and Acute Lymphoblastic Leukemia. These findings indicate that although expressed at the mRNA and protein levels, AID may not be fully functional in SMZL cases. Finally we addressed the potential clinical significance of AID expression. We identified for that purpose a group of “progressive SMZL” patients that had received immuno-chemotherapy after splenectomy because of a significant risk of progression or transformation into aggressive large B cell lymphoma (n = 8/27) pre-empting outcome differences. We found a higher proportion of AID expressing patients in the defined “progressive SMZL” group (n = 7/8) as compared to the proportion found in the “indolent SMZL” group (n = 5/14, p = 0,03). Altogether, this data suggest that the B cell clone leading to SMZL originate from the marginal zone and support the hypothesis of a lymphoproliferative disorder affecting the T-independent response. AID expression in SMZL may reflect an advanced stage of the disease and could be correlated with the evolution of the lymphoma into a more clinically or pathologically aggressive form. Disclosures: No relevant conflicts of interest to declare.


Blood ◽  
2009 ◽  
Vol 113 (16) ◽  
pp. 3706-3715 ◽  
Author(s):  
Nancy S. Longo ◽  
Patricia L. Lugar ◽  
Sule Yavuz ◽  
Wen Zhang ◽  
Peter H. L. Krijger ◽  
...  

Abstract Subjects with X-linked hyper-IgM syndrome (X-HIgM) have a markedly reduced frequency of CD27+ memory B cells, and their Ig genes have a low level of somatic hypermutation (SHM). To analyze the nature of SHM in X-HIgM, we sequenced 209 nonproductive and 926 productive Ig heavy chain genes. In nonproductive rearrangements that were not subjected to selection, as well as productive rearrangements, most of the mutations were within targeted RGYW, WRCY, WA, or TW motifs (R = purine, Y = pyrimidine, and W = A or T). However, there was significantly decreased targeting of the hypermutable G in RGYW motifs. Moreover, the ratio of transitions to transversions was markedly increased compared with normal. Microarray analysis documented that specific genes involved in SHM, including activation-induced cytidine deaminase (AICDA) and uracil-DNA glycosylase (UNG2), were up-regulated in normal germinal center (GC) B cells, but not induced by CD40 ligation. Similar results were obtained from light chain rearrangements. These results indicate that in the absence of CD40-CD154 interactions, there is a marked reduction in SHM and, specifically, mutations of AICDA-targeted G residues in RGYW motifs along with a decrease in transversions normally related to UNG2 activity.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 2295-2295
Author(s):  
Yoshinobu Matsuo ◽  
Hans G. Drexler ◽  
Akira Harashima ◽  
Ayumi Okochi ◽  
Masanori Daibata ◽  
...  

Abstract Expression of immunoglobulin (Ig) chains is a definitive marker of B-cell origin. Ig chains are generated during B-cell maturation by somatic rearrangement of Ig gene sequences. This rearrangement generally follows an orderly progression beginning with the heavy (H) chain genes and proceeding to the light (L) chain genes. The fact that Ig expression in B-cells generally reveals single L and H chains implies monoclonal cell expansion. Nevertheless, several exceptions have been reported, including double light chain positive cases. However, only little is known about mature B-cell malignancies lacking any Ig protein expression at all. In order to clarify the mechanisms of lacking any Ig protein expression in mature B-cell malignancies, we have analyzed the expression of activation-induced cytidine deaminase (AID), terminal deoxynucleotidyl transferase (TdT), recombination acting gene (RAG)-1 and RAG-2, transcription factors (TFs) and mRNA transcripts of Ig variable heavy (IgVH) chains using five both surface membrane (Sm) and cytoplasmic (Cy) Ig negative B-cell lines derived from acute lymphoblastic leukemia L3 type (ALL-L3), Burkitt’s lymphoma (BL) and pyothorax-associated lymphoma (PAL). BALM-9N and BALM-16 are ALL-L3, KATATA is BL, OPL-1 and OPL-3 are PAL-derived cell lines (EBV+). In cytogenetic analysis, t(8;14)(q24;q32) in BALM-9N and KATATA and t(8;22)(q24;q11) in BALM-16 were detected, respectively. Band 14q32 was not involved in the PAL cell lines. All cell lines showed rearrangement of IgH chain genes. Expression of RAG-1 and RAG-2 was variable, TdT was negative for all, AID was expressed in all cell lines except for PAL cell line OPL-3. The seven TFs BOB1/OBF1, E2A, IKAROS, OCT1, OCT2, PAX5 and PU1 were universally expressed at the mRNA level in all cell lines. Reverse transcriptase polymerase chain reaction elucidated the IgVH gene usage. BALM-9N = VH4; BALM-16 = VH2; KATATA = VH3; OPL-1 = VH3; OPL-3 = VH3. In summary, the present study demonstrates that Ig gene recombination, class switch recombination and somatic hypermutation machineries are not the cause for the lacking expression of both Sm/Cy Ig chains in mature B-cell malignancies. The lack of any Sm/Cy Ig expression in such mature B-cells may indicate rather a germinal center origin.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 181-181
Author(s):  
Tanja Gruber ◽  
Mi Sook Chang ◽  
Richard Sposto ◽  
Markus Müschen

Abstract Abstract 181 Activation-Induced Cytidine Deaminase (AID) is required for somatic hypermutation and immunoglobulin (Ig) class switch recombination in germinal center (GC) B cells. Occasionally, AID can target non-Ig genes and thereby promote GC B cell lymphomagenesis. We recently demonstrated that the oncogenic BCR-ABL1 kinase induces aberrant expression of AID in pre-B acute lymphoblastic leukemia (ALL). Compared to other ALL subtypes, BCR-ABL1 ALL is considered high risk and is characterized by a high degree of genetic instability. Because aberrant mutational activity of AID is associated with malignant transformation in B cell lymphoma, we sought to determine whether aberrant AID expression contributes to clonal evolution and genetic instability in Ph+ ALL. To investigate the function of AID expression in Ph+ ALL, we established a genetic loss-of-function model for Ph+ ALL: Bone marrow cells from AID−/− mice and AID+/+ controls were transformed by retroviral transduction with BCR-ABL1 under B lymphoid culture conditions and subsequently injected into lethally irradiated congenic recipients. Mice transplanted with AID−/−BCR-ABL1 ALL had prolonged median survival as compared to mice transplanted with leukemia cells generated from AID+/+ bone marrow (AID−/− 34 days (n=18) vs AID+/+ 13 days (n=21); p<0.0001). In secondary and tertiary transplant experiments, however, the difference between AID−/− and AID+/+BCR-ABL1 ALL narrowed as determined by a decreasing hazard ratio (from 25.5 in the primary transplant to 5.1 in the secondary and 2.9 in the tertiary transplantation). These findings suggest that aberrant AID expression accelerates clonal evolution of Ph+ ALL, but AID-independent factors exist that are sufficient for transformation. In support of enzymatic activity of AID in BCR-ABL1-transformed ALL cells, we observed that aberrant somatic hypermutation of non-immunoglobulin genes in these leukemias was largely dependent on AID: mutations in the known hypermutation target genes Pax5 and Rhoh were increased in AID+/+ but not AID−/−BCR-ABL1 ALL cells. Mutations in the first intron of Rhoh as observed here are relevant because they interfere with Rhoh transcription. Indeed, we found that Rhoh mRNA levels are significantly higher in AID−/− compared to AID+/+BCR-ABL1 ALL cells. Rhoh is a hematopoietic specific GTPase that negatively regulates Rac-mediated signaling downstream of the oncogenic BCR-ABL1 kinase. AID-dependent mutation and transcriptional inactivation of Rhoh in BCR-ABL1 ALL therefore likely augments oncogenic BCR-ABL1 signaling. Consistent with a causative role of AID in genetic instability, AID−/− leukemia had a lower frequency of amplifications (17+2 vs 45+7; p=0.002) and deletions (11+2 vs 40+7; p=0.003) as compared to AID+/+ leukemias. AID−/− and AID+/+ ALL cells showed a markedly distinct gene expression pattern with 2,365 differentially expressed genes (p=0.003; FDR 0.05). A detailed analysis of these differences in gene expression revealed that AID−/−BCR-ABL1 ALL cells failed to downregulate a number of tumor suppressor genes including p53, Rhoh, Cdkn1a (p21), and Blnk (SLP65). AID-dependent downregulation of p53 in BCR-ABL1 ALL cells is of particular importance, because previous work demonstrated that transcriptional repression of p53 in normal GC B cells is required to make these cells permissive to high levels of AID expression. AID-induced DNA damage would otherwise activate p53 and rapidly induce apoptosis. Compared to AID-deficient BCR-ABL1 ALL, AID+/+BCR-ABL1 ALL cells are more resistant to Imatinib-treatment. However, acquisition of BCR-ABL1 kinase domain mutations does not appear to be the main cause of drug-resistance in this experiment, since only one relevant mutation was amplified from AID+/+ ALL cells (no mutations in AID−/− ALL cells). We conclude that AID accelerates clonal evolution in BCR-ABL1 ALL by enhancing genetic instability, aberrant somatic hypermutation, and by negative regulation of tumor suppressor genes. Disclosures: No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document