Isolation of Immune Cells from Adipose Tissue for Flow Cytometry

Author(s):  
Jonathan R. Brestoff
2015 ◽  
Vol 227 (1) ◽  
pp. 13-24 ◽  
Author(s):  
A D Dobrian ◽  
M A Hatcher ◽  
J J Brotman ◽  
E V Galkina ◽  
P Taghavie-Moghadam ◽  
...  

Adipose tissue (AT) inflammation is an emerging factor contributing to cardiovascular disease. STAT4 is a transcription factor expressed in adipocytes and in immune cells and contributes to AT inflammation and insulin resistance in obesity. The objective of this study was to determine the effect of STAT4 deficiency on visceral and peri-aortic AT inflammation in a model of atherosclerosis without obesity. Stat4−/−Apoe−/− mice and Apoe−/− controls were kept either on chow or Western diet for 12 weeks. Visceral and peri-aortic AT were collected and analyzed for immune composition by flow cytometry and for cytokine/chemokine expression by real-time PCR. Stat4−/−Apoe−/− and Apoe−/− mice had similar body weight, plasma glucose, and lipids. Western diet significantly increased macrophage, CD4+, CD8+, and NK cells in peri-aortic and visceral fat in Apoe−/− mice. In contrast, in Stat4−/−Apoe−/− mice, a Western diet failed to increase the percentage of immune cells infiltrating the AT. Also, IL12p40, TNFa, CCL5, CXCL10, and CX3CL1 were significantly reduced in the peri-aortic fat in Stat4−/−Apoe−/− mice. Importantly, Stat4−/−Apoe−/− mice on a Western diet had significantly reduced plaque burden vs Apoe−/− controls. In conclusion, STAT4 deletion reduces inflammation in peri-vascular and visceral AT and this may contribute via direct or indirect effects to reduced atheroma formation.


Author(s):  
Suzan Wetzels ◽  
Mitchell Bijnen ◽  
Erwin Wijnands ◽  
Erik A.L. Biessen ◽  
Casper G. Schalkwijk ◽  
...  

Diabetes ◽  
2020 ◽  
Vol 69 (Supplement 1) ◽  
pp. 44-OR
Author(s):  
YIHENG HUANG ◽  
LIUJUN CHEN ◽  
YADAN QI ◽  
DAKE QI

2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 414.2-415
Author(s):  
X. Huang ◽  
T. W. Li ◽  
J. Chen ◽  
Z. Huang ◽  
S. Chen ◽  
...  

Background:Ankylosing spondylitis (AS) is a type of common, chronic inflammatory disease that compromises the axial skeleton and sacroiliac joints, causing inflammatory low back pain and progressive spinal stiffness, over time some patients develop spinal immobility and ankylosis which can lead to a decrease in quality of life. The last few decades, evidence has clearly indicated that neutrophil also plays key roles in the progression of AS. However, the immunomodulatory roles and mechanisms of neutrophils in AS are poorly understood. T-cell immunoglobulin and mucin domain-containing protein 3 (Tim-3) has been reported as an important regulatory molecule, expressed and regulated on different innate immune cells, plays a pivotal role in several autoimmunity diseases. Recent study indicates that Tim3 is also expressed on neutrophils. However, the frequency and roles of Tim3-expressing neutrophils in AS was not clear.Objectives:In this study, we investigated the expression of Tim3 on neutrophils in AS patients and explored the correlation between the level of Tim3-expressing neutrophils and the disease activity and severity of AS.Methods:Patients with AS were recruited from Guangdong Second Provincial General Hospital (n=62). Age/sex-matched volunteers as Healthy controls (HC) (n=39). The medical history, clinical manifestations, physical examination, laboratory measurements were recorded. The expression of costimulatory molecules including programmed death 1 (PD-1), Tim-3 on neutrophils were determined by flow cytometry. The mRNA expression of PD-1 and Tim-3 was determined by real-time PCR. The levels of Tim3-expressing neutrophils in AS patients were further analyzed for their correlation with the markers of inflammation such as ESR,CRP,WBC and neutrophil count(NE), as well as disease activity and severity of AS. The expression of Tim3 on neutrophils was monitored during the course of treatment (4 weeks).Results:The expression of Tim3 on neutrophils in patients with AS was increased compared to the HC (Figure 1A). However, significant difference was observed in the frequency of PD-1-expressing neutrophils between AS patients and HC (Figure 1B). The expression analysis of Tim-3 mRNA, but not PD-1, confirmed the results obtained from flow cytometry (Figure 1C). The level of Tim3-expressing neutrophils in patients with AS showed an positive correlation with ESR, CRP and ASAS-endorsed disease activity score (ASDAS) (Figure 1D). Moreover, the frequency of Tim3-expressing neutrophils in active patients(ASDAS≥1.3) was increased as compare with the inactive patients (ASDAS<1.3) (Figure 1E). As shown in Figure 1F, the frequency of Tim3-expressing neutrophils decreased after the treatment.Conclusion:Increased Tim-3 expression on neutrophils may be a novel indicator to assess disease activity and severity in AS, which may serves as a negative feedback mechanism preventing potential tissue damage caused by excessive inflammatory responses in AS patients.References:[1]Han, G., Chen, G., Shen, B. & Li, Y., Tim-3: an activation marker and activation limiter of innate immune cells. FRONT IMMUNOL 4 449 (2013).[2]Vega-Carrascal, I. et al., Galectin-9 signaling through TIM-3 is involved in neutrophil-mediated Gram-negative bacterial killing: an effect abrogated within the cystic fibrosis lung. J IMMUNOL 192 2418 (2014).Figure 1.(A,B)The expression of Tim3 and PD-1 on neutrophils in AS and HC were determined by flow cytometry.(C) The expression of Tim3 and PD-1 on neutrophils in AS and HC were determined by RT-PCR.(D)The correction between Tim3-expressing neutrophils and ESR,CRP,ASDAS.(E) The expression of Tim3 on neutrophils in active and inactive patients.(F) Influence of treatment on the frequency of Tim3-expressing neutrophils.Disclosure of Interests:None declared


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alicja Karabasz ◽  
Monika Bzowska ◽  
Joanna Bereta ◽  
Maria Czarnek ◽  
Maja Sochalska ◽  
...  

AbstractThe binding of mouse IgG3 to Fcγ receptors (FcγR) and the existence of a mouse IgG3-specific receptor have been discussed for 40 years. Recently, integrin beta-1 (ITGB1) was proposed to be a part of an IgG3 receptor involved in the phagocytosis of IgG3-coated pathogens. We investigated the interaction of mouse IgG3 with macrophage-like J774A.1 and P388D1 cells. The existence of an IgG3-specific receptor was verified using flow cytometry and a rosetting assay, in which erythrocytes clustered around the macrophage-like cells coated with an erythrocyte-specific IgG3. Our findings confirmed that receptors binding antigen-free IgG3 are present on J774A.1 and P388D1 cells. We demonstrated for the first time that the removal of N-glycans from IgG3 completely abolished its binding to the cells. Moreover, we discovered that the cells treated with Accutase did not bind IgG3, indicating that IgG3-specific receptors are substrates of this enzyme. The results of antibody-mediated blocking of putative IgG3 receptors suggested that apart from previously proposed ITGB1, FcγRII, FcγRIII, also additional, still unknown, receptor is involved in IgG3 binding. These findings indicate that there is a complex network of glycan-dependent interactions between mouse IgG3 and the surface of effector immune cells.


2022 ◽  
Vol 2022 ◽  
pp. 1-16
Author(s):  
Dan Chen ◽  
Xiaoting Li ◽  
Hui Li ◽  
Kai Wang ◽  
Xianghua Tian

Background. As the most common hepatic malignancy, hepatocellular carcinoma (HCC) has a high incidence; therefore, in this paper, the immune-related genes were sought as biomarkers in liver cancer. Methods. In this study, a differential expression analysis of lncRNA and mRNA in The Cancer Genome Atlas (TCGA) dataset between the HCC group and the normal control group was performed. Enrichment analysis was used to screen immune-related differentially expressed genes. Cox regression analysis and survival analysis were used to determine prognostic genes of HCC, whose expression was detected by molecular experiments. Finally, important immune cells were identified by immune cell infiltration and detected by flow cytometry. Results. Compared with the normal group, 1613 differentially expressed mRNAs (DEmRs) and 1237 differentially expressed lncRNAs (DElncRs) were found in HCC. Among them, 143 immune-related DEmRs and 39 immune-related DElncRs were screened out. These genes were mainly related to MAPK cascade, PI3K-AKT signaling pathway, and TGF-beta. Through Cox regression analysis and survival analysis, MMP9, SPP1, HAGLR, LINC02202, and RP11-598F7.3 were finally determined as the potential diagnostic biomarkers for HCC. The gene expression was verified by RT-qPCR and western blot. In addition, CD4 + memory resting T cells and CD8 + T cells were identified as protective factors for overall survival of HCC, and they were found highly expressed in HCC through flow cytometry. Conclusion. The study explored the dysregulation mechanism and potential biomarkers of immune-related genes and further identified the influence of immune cells on the prognosis of HCC, providing a theoretical basis for the prognosis prediction and immunotherapy in HCC patients.


2021 ◽  
Vol 12 ◽  
Author(s):  
Alecia M. Blaszczak ◽  
Anahita Jalilvand ◽  
Willa A. Hsueh

The role of adipose tissue (AT) inflammation in obesity and its multiple related-complications is a rapidly expanding area of scientific interest. Within the last 30 years, the role of the adipocyte as an endocrine and immunologic cell has been progressively established. Like the macrophage, the adipocyte is capable of linking the innate and adaptive immune system through the secretion of adipokines and cytokines; exosome release of lipids, hormones, and microRNAs; and contact interaction with other immune cells. Key innate immune cells in AT include adipocytes, macrophages, neutrophils, and innate lymphoid cells type 2 (ILC2s). The role of the innate immune system in promoting adipose tissue inflammation in obesity will be highlighted in this review. T cells and B cells also play important roles in contributing to AT inflammation and are discussed in this series in the chapter on adaptive immunity.


2021 ◽  
Vol 12 ◽  
Author(s):  
Annieck M. Diks ◽  
Indu Khatri ◽  
Liesbeth E.M. Oosten ◽  
Bas de Mooij ◽  
Rick J. Groenland ◽  
...  

Antigen-specific serum immunoglobulin (Ag-specific Ig) levels are broadly used as correlates of protection. However, in several disease and vaccination models these fail to predict immunity. In these models, in-depth knowledge of cellular processes associated with protective versus poor responses may bring added value. We applied high-throughput multicolor flow cytometry to track over-time changes in circulating immune cells in 10 individuals following pertussis booster vaccination (Tdap, Boostrix®, GlaxoSmithKline). Next, we applied correlation network analysis to extensively investigate how changes in individual cell populations correlate with each other and with Ag-specific Ig levels. We further determined the most informative cell subsets and analysis time points for future studies. Expansion and maturation of total IgG1 plasma cells, which peaked at day 7 post-vaccination, was the most prominent cellular change. Although these cells preceded the increase in Ag-specific serum Ig levels, they did not correlate with the increase of Ig levels. In contrast, strong correlation was observed between Ag-specific IgGs and maximum expansion of total IgG1 and IgA1 memory B cells at days 7 to 28. Changes in circulating T cells were limited, implying the need for a more sensitive approach. Early changes in innate immune cells, i.e. expansion of neutrophils, and expansion and maturation of monocytes up to day 5, most likely reflected their responses to local damage and adjuvant. Here we show that simultaneous monitoring of multiple circulating immune subsets in blood by flow cytometry is feasible. B cells seem to be the best candidates for vaccine monitoring.


2018 ◽  
Vol 103 (5) ◽  
pp. 955-963 ◽  
Author(s):  
Ákos M. Lőrincz ◽  
Viktória Szeifert ◽  
Balázs Bartos ◽  
Erzsébet Ligeti

Sign in / Sign up

Export Citation Format

Share Document