Differential Coexpression Network Analysis for Gene Expression Data

Author(s):  
Bao-Hong Liu
2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Xue Jiang ◽  
Han Zhang ◽  
Xiongwen Quan

Screening disease-related genes by analyzing gene expression data has become a popular theme. Traditional disease-related gene selection methods always focus on identifying differentially expressed gene between case samples and a control group. These traditional methods may not fully consider the changes of interactions between genes at different cell states and the dynamic processes of gene expression levels during the disease progression. However, in order to understand the mechanism of disease, it is important to explore the dynamic changes of interactions between genes in biological networks at different cell states. In this study, we designed a novel framework to identify disease-related genes and developed a differentially coexpressed disease-related gene identification method based on gene coexpression network (DCGN) to screen differentially coexpressed genes. We firstly constructed phase-specific gene coexpression network using time-series gene expression data and defined the conception of differential coexpression of genes in coexpression network. Then, we designed two metrics to measure the value of gene differential coexpression according to the change of local topological structures between different phase-specific networks. Finally, we conducted meta-analysis of gene differential coexpression based on the rank-product method. Experimental results demonstrated the feasibility and effectiveness of DCGN and the superior performance of DCGN over other popular disease-related gene selection methods through real-world gene expression data sets.


2020 ◽  
pp. 1052-1075 ◽  
Author(s):  
Dina Elsayad ◽  
A. Ali ◽  
Howida A. Shedeed ◽  
Mohamed F. Tolba

The gene expression analysis is an important research area of Bioinformatics. The gene expression data analysis aims to understand the genes interacting phenomena, gene functionality and the genes mutations effect. The Gene regulatory network analysis is one of the gene expression data analysis tasks. Gene regulatory network aims to study the genes interactions topological organization. The regulatory network is critical for understanding the pathological phenotypes and the normal cell physiology. There are many researches that focus on gene regulatory network analysis but unfortunately some algorithms are affected by data size. Where, the algorithm runtime is proportional to the data size, therefore, some parallel algorithms are presented to enhance the algorithms runtime and efficiency. This work presents a background, mathematical models and comparisons about gene regulatory networks analysis different techniques. In addition, this work proposes Parallel Architecture for Gene Regulatory Network (PAGeneRN).


Blood ◽  
2015 ◽  
Vol 126 (23) ◽  
pp. 2663-2663
Author(s):  
Matthew A Care ◽  
Stephen M Thirdborough ◽  
Andrew J Davies ◽  
Peter W.M. Johnson ◽  
Andrew Jack ◽  
...  

Abstract Purpose To assess whether comparative gene network analysis can reveal characteristic immune response signatures that predict clinical response in Diffuse large B-cell lymphoma (DLBCL). Background The wealth of available gene expression data sets for DLBCL and other cancer types provides a resource to define recurrent pathological processes at the level of gene expression and gene correlation neighbourhoods. This is of particular relevance in the context of cancer immune responses, where convergence onto common patterns may drive shared gene expression profiles. Where existing and novel immunotherapies harness the immune response for therapeutic benefit such responses may provide predictive biomarkers. Methods We independently analysed publically available DLBCL gene expression data sets and a wide compendium of gene expression data from diverse cancer types, and then asked whether common elements of cancer host response could be identified from resulting networks. Using 10 DLBCL gene expression data sets, encompassing 2030 cases, we established pairwise gene correlation matrices per data set, which were merged to generate median correlations of gene pairs across all data sets. Gene network analysis and unsupervised clustering was then applied to define global representations of DLBCL gene expression neighbourhoods. In parallel a diverse range of solid and lymphoid malignancies including; breast, colorectal, oesophageal, head and neck, non-small cell lung, prostate, pancreatic cancer, Hodgkin lymphoma, Follicular lymphoma and DLBCL were independently analysed using an orthogonal weighted gene correlation network analysis of gene expression data sets from which correlated modules across diverse cancer types were identified. The biology of resulting gene neighbourhoods was assessed by signature and ontology enrichment, and the overlap between gene correlation neighbourhoods and WGCNA derived modules associated with immune/host responses was analysed. Results Amongst DLBCL data, we identified distinct gene correlation neighbourhoods associated with the immune response. These included both elements of IFN-polarised responses, core T-cell, and cytotoxic signatures as well as distinct macrophage responses. Neighbourhoods linked to macrophages separated CD163 from CD68 and CD14. In the WGCNA analysis of diverse cancer types clusters corresponding to these immune response neighbourhoods were independently identified including a highly similar cluster related to CD163. The overlapping CD163 clusters in both analyses linked to diverse Fc-Receptors, complement pathway components and patterns of scavenger receptors potentially linked to alternative macrophage activation. The relationship between the CD163 macrophage gene expression cluster and outcome was tested in DLBCL data sets, identifying a poor response in CD163 -cluster high patients, which reached statistical significance in one data set (GSE10846). Notably, the effect of the CD163-associated gene neighbourhood which correlates with poor outcome post rituximab containing immunochemotherapy is distinct from the effect of IFNG-STAT1-IRF1 polarised cytotoxic responses. The latter represents the predominant immune response pattern separating cell of origin unclassifiable (Type-III) DLBCL from either ABC or GCB DLBCL subsets, and is associated with a trend toward positive outcome. Conclusion Comparative gene expression network analysis identifies common immune response signatures shared between DLBCL and other cancer types. Gene expression clusters linked to CD163 macrophage responses and IFNG-STAT1-IRF1 polarised cytotoxic responses are common patterns with apparent divergent outcome association. Disclosures Davies: CTI: Honoraria; GIlead: Consultancy, Honoraria, Research Funding; Mundipharma: Honoraria, Research Funding; Bayer: Research Funding; Takeda: Honoraria, Research Funding; Janssen: Honoraria, Research Funding; Roche: Honoraria, Research Funding; GSK: Research Funding; Pfizer: Honoraria; Celgene: Honoraria, Research Funding. Jack:Jannsen: Research Funding.


2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Aoran Yang ◽  
Xinhuan Wang ◽  
Yaofeng Hu ◽  
Chao Shang ◽  
Yang Hong

The function of glutamate ionotropic receptor NMDA type subunit 1 (GRIN1) in neurodegenerative diseases has been widely reported; however, its role in the occurrence of glioma remains less explored. We obtained clinical data and transcriptome data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Hub gene’s expression differential analysis and survival analysis were conducted by browsing the Gene Expression Profiling Interactive Analysis (GEPIA) database, Human Protein Atlas database, and LOGpc database. We conducted a variation analysis of datasets obtained from GEO and TCGA and performed a weighted gene coexpression network analysis (WGCNA) using the R programming language (3.6.3). Kaplan-Meier (KM) analysis was used to calculate the prognostic value of GRIN1. Finally, we conducted Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses. Using STRING, we constructed a protein–protein interaction (PPI) network. Cytoscape software, a prerequisite of visualizing core genes, was installed, and CytoHubba detected the 10 most tumor-related core genes. We identified 185 differentially expressed genes (DEGs). GO and KEGG enrichment analyses illustrated that the identified DEGs are imperative in different biological functions and ascertained the potential pathways in which the DEGs may be enriched. The overall survival calculated by KM analysis showed that patients with lower expression of GRIN1 had worse prognoses than patients with higher expression of GRIN1 ( p = 0.004 ). The GEPIA and LOGpc databases were used to verify the expression difference of GRIN1 among GBM, LGG, and normal brain tissues. Ultimately, immunohistochemical assay results showed that GRIN1 was detected in normal tissue and not in the tumor specimens. Our results highlight a potential target for glioma treatment and will further our understanding of the molecular mechanisms underlying the treatment of glioma.


2022 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenyuan Han ◽  
Huiping Ren ◽  
Jingjing Sun ◽  
Lihui Jin ◽  
Qin Wang ◽  
...  

Abstract Background Invasive malignant pleomorphic adenoma (IMPA) is a highly malignant neoplasm of the oral salivary glands with a poor prognosis and a considerable risk of recurrence. Many disease-causing genes of IMPA have been identified in recent decades (e.g., P53, PCNA and HMGA2), but many of these genes remain to be explored. Weighted gene coexpression network analysis (WGCNA) is a newly emerged algorithm that can cluster genes and form modules based on similar gene expression patterns. This study constructed a gene coexpression network of IMPA via WGCNA and then carried out multifaceted analysis to identify novel disease-causing genes. Methods RNA sequencing (RNA-seq) was performed for 10 pairs of IMPA and normal tissues to acquire the gene expression profiles. Differentially expressed genes (DEGs) were screened out with the cutoff criteria of |log2 Fold change (FC)|> 1 and adjusted p value  < 0.05. Then, WGCNA was applied to systematically identify the hidden diagnostic hub genes of IMPA. Results In this research, a total of 1970 DEGs were screened out in IMPA tissues, including 1056 upregulated DEGs and 914 downregulated DEGs. Functional enrichment analysis was performed for identified DEGs and revealed an enrichment of tumor-associated GO terms and KEGG pathways. We used WGCNA to identify gene module most relevant with the histological grade of IMPA. The gene FZD2 was then recognized as the hub gene of the selected module with the highest module membership (MM) value and intramodule connectivity in protein–protein interaction (PPI) network. According to immunohistochemistry (IHC) staining, the expression level of FZD2 was higher in low-grade IMPA than in high-grade IMPA. Conclusion FZD2 shows an expression dynamic that is negatively correlated with the clinical malignancy of IMPA and it plays a central role in the transcription network of IMPA. Thus, FZD2 serves as a promising histological indicator for the precise prediction of IMPA histological stages.


2013 ◽  
Vol 34 (12) ◽  
pp. 2699-2714 ◽  
Author(s):  
Paola Forabosco ◽  
Adaikalavan Ramasamy ◽  
Daniah Trabzuni ◽  
Robert Walker ◽  
Colin Smith ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document