Identification of Copy Number Variants from SNP Arrays Using PennCNV

Author(s):  
Li Fang ◽  
Kai Wang
Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 107-107
Author(s):  
Matthew J. Walter ◽  
R. Ries ◽  
X. Li ◽  
W. Shannon ◽  
J. Payton ◽  
...  

Abstract To test if small deletions or amplifications (ie. below the resolution of cytogenetics) exist in bone marrow-derived tumor DNA from acute myeloid leukemia (AML) patients (pts), we used a dense tiling path array comparative genomic hybridization (aCGH) platform consisting of 386,165 unique oligomers spaced evenly at ∼6Kb intervals across the genome. We analyzed 144 adult de novo AML pts; 64 had normal karyotypes, and 80 had 1 or 2 clonal aberrations. Similar numbers of FAB M0/1, M2, M3, and M4 pts were included, and all samples had >30% blasts (median=72%). To generate a cancer-free control set of data, we also analyzed 23 DNA samples from normal individuals matched for age and ethnicity, and with no history of cancer. Both the tumor and cancer-free control DNA samples were co-hybridized with a pool of control DNAs from blood of 4 healthy young males. To define the sensitivity and specificity of the aCGH platform, we examined its ability to detect cytogenetically defined chromosome gains and losses. Of the 33 gains and losses present in >20% of metaphases, 29 (88%) were detected by aCGH. Of the 20 gains and losses present in ≤20% of metaphases, aCGH detected only 5 (25%). Three of 63 (4.8%) balanced translocations [t(15;17), t(8;21), t(9;11)] were detected using aCGH, indicating that breakpoints of some translocations contained small deletions. Further, we identified many previously described germline copy number variants (CNVs) in both the AML pts and cancer-free controls. To improve our ability to define even smaller somatic microdeletions and amplifications, we tested 20 AML pts using CGH arrays containing 1.5 million probes per genome (average probe spacing 1.5 Kb). To preclude detection of germline CNVs, the higher resolution CGH experiments were performed comparing tumor and skin-derived DNA from the same patient. These same sample pairs were also analyzed individually with the Affymetrix 500K SNP arrays. Using stringent criteria to define abnormal segments, we identified 64 altered loci in the 20 AML pts that were not apparent cytogenetically, and that contained ≥1 gene. SNP arrays confirmed aCGH findings in 7/9 loci >100 Kb, and in 1/55 loci <100 Kb in size. In addition, SNP arrays revealed copy number neutral loss of heterozygosity of the 11p arm in 2/20 AML pts, indicating partial uniparental disomy (UPD) involving this region. We also detected somatic deletions in the T cell receptor (TCR) (n=3/20) and immunoglobulin heavy chain (n=1/20) genes, including a homozygous deletion measuring 4.3 Kb in size. The remaining loci identified with the 1.5M oligo aCGH platform were validated using quantitative PCR with matched tumor and germline DNA. Only 5/60 putative calls were validated using this approach, and include a deletion of IGFBP2, and amplifications of CROP, CPEB4, HOMER1, and ZNF148. In summary, 13 loci containing genes have been validated by SNP arrays or qPCR. No recurrent deletions or amplifications were found in the 20 AML pts. Thus, an additional 74 AML pts are being screened for evidence of recurrence at these loci. Our data suggest that an ultra-dense platform may be required to detect the majority of somatic copy number changes in AML genomes, and that UPD is relatively rare in AML pts, occurring in ∼10% of pts, and recurrent only in the 11p region.


2012 ◽  
Vol 13 (1) ◽  
Author(s):  
Robert B Scharpf ◽  
Terri H Beaty ◽  
Holger Schwender ◽  
Samuel G Younkin ◽  
Alan F Scott ◽  
...  

2014 ◽  
Vol 13s4 ◽  
pp. CIN.S15203
Author(s):  
Ming Li ◽  
Yalu Wen ◽  
Wenjiang Fu

Cumulative evidence has shown that structural variations, due to insertions, deletions, and inversions of DNA, may contribute considerably to the development of complex human diseases, such as breast cancer. High-throughput genotyping technologies, such as Affymetrix high density single-nucleotide polymorphism (SNP) arrays, have produced large amounts of genetic data for genome-wide SNP genotype calling and copy number estimation. Meanwhile, there is a great need for accurate and efficient statistical methods to detect copy number variants. In this article, we introduce a hidden-Markov-model (HMM)-based method, referred to as the PICR-CNV, for copy number inference. The proposed method first estimates copy number abundance for each single SNP on a single array based on the raw fluorescence values, and then standardizes the estimated copy number abundance to achieve equal footing among multiple arrays. This method requires no between-array normalization, and thus, maintains data integrity and independence of samples among individual subjects. In addition to our efforts to apply new statistical technology to raw fluorescence values, the HMM has been applied to the standardized copy number abundance in order to reduce experimental noise. Through simulations, we show our refined method is able to infer copy number variants accurately. Application of the proposed method to a breast cancer dataset helps to identify genomic regions significantly associated with the disease.


2019 ◽  
Vol 1 (1) ◽  
pp. 6-12
Author(s):  
Fatima Javeria ◽  
Shazma Altaf ◽  
Alishah Zair ◽  
Rana Khalid Iqbal

Schizophrenia is a severe mental disease. The word schizophrenia literally means split mind. There are three major categories of symptoms which include positive, negative and cognitive symptoms. The disease is characterized by symptoms of hallucination, delusions, disorganized thinking and speech. Schizophrenia is related to many other mental and psychological problems like suicide, depression, hallucinations. Including these, it is also a problem for the patient’s family and the caregiver. There is no clear reason for the disease, but with the advances in molecular genetics; certain epigenetic mechanisms are involved in the pathophysiology of the disease. Epigenetic mechanisms that are mainly involved are the DNA methylation, copy number variants. With the advent of GWAS, a wide range of SNPs is found linked with the etiology of schizophrenia. These SNPs serve as ‘hubs’; because these all are integrating with each other in causing of schizophrenia risk. Until recently, there is no treatment available to cure the disease; but anti-psychotics can reduce the disease risk by minimizing its symptoms. Dopamine, serotonin, gamma-aminobutyric acid, are the neurotransmitters which serve as drug targets in the treatment of schizophrenia. Due to the involvement of genetic and epigenetic mechanisms, drugs available are already targeting certain genes involved in the etiology of the disease.


2020 ◽  
Author(s):  
◽  
Evelina Siavrienė

A Molecular and Functional Evaluation of Coding and Non-Coding Genome Sequence Variants and Copy Number Variants


2016 ◽  
Vol 94 (suppl_5) ◽  
pp. 146-146
Author(s):  
D. M. Bickhart ◽  
L. Xu ◽  
J. L. Hutchison ◽  
J. B. Cole ◽  
D. J. Null ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document