Assaying d-Body Amino Acids as d-Alanine and Amino Acid Racemase (AARase) Activity Using NADH Oxidoreduction Enzymic System

Author(s):  
Natsuki Matsumoto ◽  
Makoto Kanauchi
2014 ◽  
Vol 99 (1) ◽  
pp. 283-291 ◽  
Author(s):  
Pablo Soriano-Maldonado ◽  
Francisco Javier Las Heras-Vazquez ◽  
Josefa María Clemente-Jimenez ◽  
Felipe Rodriguez-Vico ◽  
Sergio Martínez-Rodríguez

2018 ◽  
Vol 475 (8) ◽  
pp. 1397-1410 ◽  
Author(s):  
Tetsuya Miyamoto ◽  
Masumi Katane ◽  
Yasuaki Saitoh ◽  
Masae Sekine ◽  
Hiroshi Homma

Non-canonical d-amino acids play important roles in bacteria including control of peptidoglycan metabolism and biofilm disassembly. Bacteria appear to produce non-canonical d-amino acids to adapt to various environmental changes, and understanding the biosynthetic pathways is important. We identified novel amino acid racemases possessing the ability to produce non-canonical d-amino acids in Escherichia coli and Bacillus subtilis in our previous study, whereas the biosynthetic pathways of these d-amino acids still remain unclear. In the present study, we demonstrated that two cystathionine β-lyases (MetC and MalY) from E. coli produce non-canonical d-amino acids including non-proteinogenic amino acids. Furthermore, MetC displayed d- and l-serine (Ser) dehydratase activity. We characterised amino acid racemase, Ser dehydratase and cysteine lyase activities, and all were higher for MetC. Interestingly, all three activities were at a comparable level for MetC, although optimal conditions for each reaction were distinct. These results indicate that MetC and MalY are multifunctional enzymes involved in l-methionine metabolism and the production of d-amino acids, as well as d- and l-Ser metabolism. To our knowledge, this is the first evidence that cystathionine β-lyase is a multifunctional enzyme with three different activities.


Amino Acids ◽  
2015 ◽  
Vol 47 (8) ◽  
pp. 1579-1587 ◽  
Author(s):  
Ryushi Kawakami ◽  
Taketo Ohmori ◽  
Haruhiko Sakuraba ◽  
Toshihisa Ohshima

2014 ◽  
Vol 49 (8) ◽  
pp. 1281-1287 ◽  
Author(s):  
Pablo Soriano-Maldonado ◽  
María José Rodríguez-Alonso ◽  
Carmen Hernández-Cervantes ◽  
Ignacio Rodríguez-García ◽  
Josefa María Clemente-Jiménez ◽  
...  

2017 ◽  
Vol 5 (33) ◽  
Author(s):  
Shiro Kato ◽  
Tadao Oikawa

ABSTRACT This announcement reports the complete genome sequence of strain LK-145 of Lactobacillus sakei isolated from a Japanese sake cellar as a potent strain for the production of large amounts of d-amino acids. Three putative genes encoding an amino acid racemase were identified.


Author(s):  
Florian Javelle ◽  
Descartes Li ◽  
Philipp Zimmer ◽  
Sheri L. Johnson

Abstract. Emotion-related impulsivity, defined as the tendency to say or do things that one later regret during periods of heightened emotion, has been tied to a broad range of psychopathologies. Previous work has suggested that emotion-related impulsivity is tied to an impaired function of the serotonergic system. Central serotonin synthesis relies on the intake of the essential amino acid, tryptophan and its ability to pass through the blood brain barrier. Objective: The aim of this study was to determine the association between emotion-related impulsivity and tryptophan intake. Methods: Undergraduate participants (N = 25, 16 women, 9 men) completed a self-rated measure of impulsivity (Three Factor Impulsivity Index, TFI) and daily logs of their food intake and exercise. These data were coded using the software NutriNote to evaluate intakes of tryptophan, large neutral amino acids, vitamins B6/B12, and exercise. Results: Correlational analyses indicated that higher tryptophan intake was associated with significantly lower scores on two out of three subscales of the TFI, Pervasive Influence of Feelings scores r =  –.502, p < . 010, and (lack-of) Follow-Through scores, r =  –.407, p < . 050. Conclusion: Findings provide further evidence that emotion-related impulsivity is correlated to serotonergic indices, even when considering only food habits. It also suggests the need for more research on whether tryptophan supplements might be beneficial for impulsive persons suffering from a psychological disorder.


1964 ◽  
Vol 11 (01) ◽  
pp. 064-074 ◽  
Author(s):  
Robert H Wagner ◽  
William D McLester ◽  
Marion Smith ◽  
K. M Brinkhous

Summary1. The use of several amino acids, glycine, alpha-aminobutyric acid, alanine, beta-alanine, and gamma-aminobutyric acid, as plasma protein precipitants is described.2. A specific procedure is detailed for the preparation of canine antihemophilic factor (AHF, Factor VIII) in which glycine, beta-alanine, and gammaaminobutyric acid serve as the protein precipitants.3. Preliminary results are reported for the precipitation of bovine and human AHF with amino acids.


1979 ◽  
Vol 42 (05) ◽  
pp. 1652-1660 ◽  
Author(s):  
Francis J Morgan ◽  
Geoffrey S Begg ◽  
Colin N Chesterman

SummaryThe amino acid sequence of the subunit of human platelet factor 4 has been determined. Human platelet factor 4 consists of identical subunits containing 70 amino acids, each with a molecular weight of 7,756. The molecule contains no methionine, phenylalanine or tryptophan. The proposed amino acid sequence of PF4 is: Glu-Ala-Glu-Glu-Asp-Gly-Asp-Leu-Gln-Cys-Leu-Cys-Val-Lys-Thr-Thr-Ser- Gln-Val-Arg-Pro-Arg-His-Ile-Thr-Ser-Leu-Glu-Val-Ile-Lys-Ala-Gly-Pro-His-Cys-Pro-Thr-Ala-Gin- Leu-Ile-Ala-Thr-Leu-Lys-Asn-Gly-Arg-Lys-Ile-Cys-Leu-Asp-Leu-Gln-Ala-Pro-Leu-Tyr-Lys-Lys- Ile-Ile-Lys-Lys-Leu-Leu-Glu-Ser. From consideration of the homology with p-thromboglobulin, disulphide bonds between residues 10 and 36 and between residues 12 and 52 can be inferred.


Sign in / Sign up

Export Citation Format

Share Document