Analysis of Lipids in Single Cells and Organelles Using Nanomanipulation-Coupled Mass Spectrometry

Author(s):  
Mandy S. Phelps ◽  
Guido F. Verbeck
2020 ◽  
Author(s):  
Feifei Jia ◽  
Jie Wang ◽  
Yanyan Zhang ◽  
Qun Luo ◽  
Luyu Qi ◽  
...  

<p></p><p><i>In situ</i> visualization of proteins of interest at single cell level is attractive in cell biology, molecular biology and biomedicine, which usually involves photon, electron or X-ray based imaging methods. Herein, we report an optics-free strategy that images a specific protein in single cells by time of flight-secondary ion mass spectrometry (ToF-SIMS) following genetic incorporation of fluorine-containing unnatural amino acids as a chemical tag into the protein via genetic code expansion technique. The method was developed and validated by imaging GFP in E. coli and human HeLa cancer cells, and then utilized to visualize the distribution of chemotaxis protein CheA in E. coli cells and the interaction between high mobility group box 1 protein and cisplatin damaged DNA in HeLa cells. The present work highlights the power of ToF-SIMS imaging combined with genetically encoded chemical tags for <i>in situ </i>visualization of proteins of interest as well as the interactions between proteins and drugs or drug damaged DNA in single cells.</p><p></p>


2016 ◽  
Vol 88 (11) ◽  
pp. 5783-5789 ◽  
Author(s):  
Stijn J. M. Van Malderen ◽  
Eva Vergucht ◽  
Maarten De Rijcke ◽  
Colin Janssen ◽  
Laszlo Vincze ◽  
...  

The Analyst ◽  
2017 ◽  
Vol 142 (10) ◽  
pp. 1703-1710 ◽  
Author(s):  
A. J. Herrmann ◽  
S. Techritz ◽  
N. Jakubowski ◽  
A. Haase ◽  
A. Luch ◽  
...  

High lateral resolution of metal detection in single cells by use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) demands powerful staining methods.


Author(s):  
Harrison Specht ◽  
Nikolai Slavov

Many pressing medical challenges - such as diagnosing disease, enhancing directed stem cell differentiation, and classifying cancers - have long been hindered by limitations in our ability to quantify proteins in single cells. Mass-spectrometry (MS) is poised to transcend these limitations by developing powerful methods to routinely quantify thousands of proteins and proteoforms across many thousands of single cells. We outline specific technological developments and ideas that can increase the sensitivity and throughput of single cell MS by orders of magnitude and usher in this new age. These advances will transform medicine and ultimately contribute to understanding biological systems on an entirely new level.


2003 ◽  
Vol 75 (14) ◽  
pp. 3429-3434 ◽  
Author(s):  
Peter Sjövall ◽  
Jukka Lausmaa ◽  
Håkan Nygren ◽  
Lennart Carlsson ◽  
Per Malmberg

2018 ◽  
Vol 33 (7) ◽  
pp. 1256-1263 ◽  
Author(s):  
Ana López-Serrano Oliver ◽  
Sabine Baumgart ◽  
Wolfram Bremser ◽  
Sabine Flemig ◽  
Doreen Wittke ◽  
...  

A promising analytical methodology is proposed to study nanoparticle-cell interactions providing information of the number of NPs internalized by cells or externally bound to the cell surface.


Sign in / Sign up

Export Citation Format

Share Document