Evaluation of Respiration with Clark Type Electrode in Isolated Mitochondria and Permeabilized Animal Cells

Author(s):  
Ana M. Silva ◽  
Paulo J. Oliveira
1957 ◽  
Vol 3 (1) ◽  
pp. 61-70 ◽  
Author(s):  
A. J. Hodge ◽  
E. M. Martin ◽  
R. K. Morton

1. Electron micrographs of thin sections of material fixed with buffered osmium tetroxide have been used for comparison of the fine structure of isolated cytoplasmic particles from silver beet petioles and roots of germinating wheat with that of the cytoplasm of the intact cells. 2. Mitochondria of wheat roots have an external double membrane and poorly oriented internal double membranes. As compared with the structures seen in situ, the isolated mitochondria showed evidence of some disorganisation of the fine internal structure, probably due to osmotic effects. The possible influence of such changes on the enzymic properties of the isolated mitochondria is discussed. 3. The isolated plant microsomes are mainly spherical vesicular structures consisting of (a) an outer membrane enclosing (b) either an homogeneous slightly dense material (wheat root microsomes) or some granular dense material (silver beet microsomes) and (c) small dense particles, mostly associated with the vesicle membranes. 4. The cytoplasm of the wheat root cells does not contain any structures similar to the isolated microsomes but has a very dense reticular network, consisting of membranes with associated small dense particles, here called the endoplasmic reticulum. The observations indicate that the isolated microsomes arise mainly by rupture and transformation of the membranes of this structure. The effects of such extensive changes in the lipoprotein membranes on the enzymic activities of the endoplasmic reticulum, as studied in isolated microsomes, is discussed. 5. Meristematic wheat root cells contain structures which consist of smooth membranes with associated vacuoles and are similar to the Golgi zones of animal cells. The membranes of these zones probably contribute to the microsomal fraction under the conditions of preparation used for the enzymic and chemical studies previously reported.


Author(s):  
Robert M. Glaeser ◽  
Thea B. Scott

The carbon-replica technique can be used to obtain information about cell-surface structure that cannot ordinarily be obtained by thin-section techniques. Mammalian erythrocytes have been studied by the replica technique and they appear to be characterized by a pebbly or “plaqued“ surface texture. The characteristic “particle” diameter is about 200 Å to 400 Å. We have now extended our observations on cell-surface structure to chicken and frog erythrocytes, which possess a broad range of cellular functions, and to normal rat lymphocytes and mouse ascites tumor cells, which are capable of cell division. In these experiments fresh cells were washed in Eagle's Minimum Essential Medium Salt Solution (for suspension cultures) and one volume of a 10% cell suspension was added to one volume of 2% OsO4 or 5% gluteraldehyde in 0.067 M phosphate buffer, pH 7.3. Carbon replicas were obtained by a technique similar to that employed by Glaeser et al. Figure 1 shows an electron micrograph of a carbon replica made from a chicken erythrocyte, and Figure 2 shows an enlarged portion of the same cell.


Author(s):  
K. S. McCarty ◽  
R. F. Weave ◽  
L. Kemper ◽  
F. S. Vogel

During the prodromal stages of sporulation in the Basidiomycete, Agaricus bisporus, mitochondria accumulate in the basidial cells, zygotes, in the gill tissues prior to entry of these mitochondria, together with two haploid nuclei and cytoplasmic ribosomes, into the exospores. The mitochondria contain prominent loci of DNA [Fig. 1]. A modified Kleinschmidt spread technique1 has been used to evaluate the DNA strands from purified whole mitochondria released by osmotic shock, mitochondrial DNA purified on CsCl gradients [density = 1.698 gms/cc], and DNA purified on ethidium bromide CsCl gradients. The DNA appeared as linear strands up to 25 u in length and circular forms 2.2-5.2 u in circumference. In specimens prepared by osmotic shock, many strands of DNA are apparently attached to membrane fragments [Fig. 2]. When mitochondria were ruptured in hypotonic sucrose and then fixed in glutaraldehyde, the ribosomes were released for electron microscopic examination.


Author(s):  
Brian Burke

The nuclear envelope is a complex membrane structure that forms the boundary of the nuclear compartment in eukaryotes. It regulates the passage of macromolecules between the two compartments and may be important for organizing interphase chromosome architecture. In interphase animal cells it forms a remarkably stable structure consisting of a double membrane ouerlying a protein meshwork or lamina and penetrated by nuclear pore complexes. The latter form the channels for nucleocytoplasmic exchange of macromolecules, At the onset of mitosis, however, it rapidly disassembles, the membranes fragment to yield small vesicles and the lamina, which is composed of predominantly three polypeptides, lamins R, B and C (MW approx. 74, 68 and 65 kDa respectiuely), breaks down. Lamins B and C are dispersed as monomers throughout the mitotic cytoplasm, while lamin B remains associated with the nuclear membrane vesicles.


Author(s):  
James Cronshaw ◽  
Jamison E. Gilder

Adenosine triphosphatase (ATPase) activity has been shown to be associated with numerous physiological processes in both plants and animal cells. Biochemical studies have shown that in higher plants ATPase activity is high in cell wall preparations and is associated with the plasma membrane, nuclei, mitochondria, chloroplasts and lysosomes. However, there have been only a few ATPase localization studies of higher plants at the electron microscope level. Poux (1967) demonstrated ATPase activity associated with most cellular organelles in the protoderm cells of Cucumis roots. Hall (1971) has demonstrated ATPase activity in root tip cells of Zea mays. There was high surface activity largely associated with the plasma membrane and plasmodesmata. ATPase activity was also demonstrated in mitochondria, dictyosomes, endoplasmic reticulum and plastids.


Author(s):  
C. H. Haigler ◽  
A. W. Roberts

Tracheary elements, the water-conducting cells in plants, are characterized by their reinforced walls that became thickened in localized patterns during differentiation (Fig. 1). The synthesis of this localized wall involves abundant secretion of Golgi vesicles that export preformed matrix polysaccharides and putative proteins involved in cellulose synthesis. Since the cells are not growing, some kind of endocytotic process must also occur. Many researchers have commented on where exocytosis occurs in relation to the thickenings (for example, see), but they based their interpretations on chemical fixation techniques that are not likely to provide reliable information about rapid processes such as vesicle fusion. We have used rapid freezing to more accurately assess patterns of vesicle fusion in tracheary elements. We have also determined the localization of calcium, which is known to regulate vesicle fusion in plant and animal cells.Mesophyll cells were obtained from immature first leaves of Zinnia elegans var. Envy (Park Seed Co., Greenwood, S.C.) and cultured as described previously with the following exceptions: (a) concentration of benzylaminopurine in the culture medium was reduced to 0.2 mg/l and myoinositol was eliminated; and (b) 1.75ml cultures were incubated in 22 x 90mm shell vials with 112rpm rotary shaking. Cells that were actively involved in differentiation were harvested and frozen in solidifying Freon as described previously. Fractures occurred preferentially at the cell/planchet interface, which allowed us to find some excellently-preserved cells in the replicas. Other differentiating cells were incubated for 20-30 min in 10(μM CTC (Sigma), an antibiotic that fluoresces in the presence of membrane-sequestered calcium. They were observed in an Olympus BH-2 microscope equipped for epi-fluorescence (violet filter package and additional Zeiss KP560 barrier filter to block chlorophyll autofluorescence).


Author(s):  
M.B. Braunfeld ◽  
M. Moritz ◽  
B.M. Alberts ◽  
J.W. Sedat ◽  
D.A. Agard

In animal cells, the centrosome functions as the primary microtubule organizing center (MTOC). As such the centrosome plays a vital role in determining a cell's shape, migration, and perhaps most importantly, its division. Despite the obvious importance of this organelle little is known about centrosomal regulation, duplication, or how it nucleates microtubules. Furthermore, no high resolution model for centrosomal structure exists.We have used automated electron tomography, and reconstruction techniques in an attempt to better understand the complex nature of the centrosome. Additionally we hope to identify nucleation sites for microtubule growth.Centrosomes were isolated from early Drosophila embryos. Briefly, after large organelles and debris from homogenized embryos were pelleted, the resulting supernatant was separated on a sucrose velocity gradient. Fractions were collected and assayed for centrosome-mediated microtubule -nucleating activity by incubating with fluorescently-labeled tubulin subunits. The resulting microtubule asters were then spun onto coverslips and viewed by fluorescence microscopy.


2000 ◽  
Vol 628 ◽  
Author(s):  
Giovanni Carturan ◽  
Renzo Dal Monte ◽  
Maurizio Muraca

ABSTRACTSi-alkoxides in gas phase are reactive towards the surface of animal cells, depositing a homogeneous layer of porous silica. This encapsulation method preserves cell viability and does not alter the hindrance of the biological load.In the prospective use for the design of a hybrid bioartificial liver, hepatocytes in a collagen matrix can be entrapped by the siliceous deposit which provides definite mechanical stability to the collagen matrix and molecular cutoff vs. high molecular weight proteins, including immunoglobulins. The functionality of the encapsulated cell load is maintained for the expressions of typical liver and pancreas metabolic activities.


Sign in / Sign up

Export Citation Format

Share Document