Investigation on Soil Parameters for Gray Water Harvesting

2019 ◽  
pp. 905-911
Author(s):  
S. L. Hake ◽  
R. M. Damgir ◽  
P. R. Awsarmal ◽  
V. U. Ashrit ◽  
J. N. Narote
Water ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1944
Author(s):  
Jafari Shalamzari ◽  
Zhang ◽  
Gholami ◽  
Zhang

Site selection for runoff harvesting at large scales is a very complex task. It requires inclusion and spatial analysis of a multitude of accurately measured parameters in a time-efficient manner. Compared with direct measurements of runoff, which is time consuming and costly, a combination of a Geographic Information System (GIS) and multi-criteria techniques have proven feasible to address this challenge. Although the accuracy of this new approach is lower than the direct method, conducting in-situ measurements over large scales is not feasible due to its financial issues, a lack of sufficient human resources, and time limitations. To achieve this purpose, climatic, topographic, and soil parameters were used to estimate a runoff coefficient and volume for a single event with the 33%-exceedance probability of maximum daily rainfall in the Kavir National Park of Iran. The main challenges ahead of this research have been a) the large area of the park and the inability to directly evaluate site suitability for runoff harvesting, b) the need for a quick and reliable site evaluation to implement water harvesting measures to address water scarcity, and c) the lack of discharge volume data from water streams (as there are no permanent water streams in the site) and the necessity of reliably estimating runoff in different parts of the park to design water harvesting structures which have been addressed by using GIS and a rainfall-runoff model (Soil Conservation Service Curve Number (SCS-CN)). Site suitability was evaluated for the natural territory of two important wildlife species of the park, namely Gazella dorcas and Ovis orientalis, as the main important food sources of an endangered species named Acinonyx jubatus, commonly known as Persian Cheetah. Saving Persian Cheetah from extinction is currently the top priority for the park managers, which is the main factor behind the species chosen for this research. The Analytic Hierarchical Process (AHP) and fuzzy membership functions were employed to assign weights and standardized thematic layers, respectively. The layers were then integrated using the weighted linear combination method (WLC) to obtain the final suitability map. Accordingly, 38% of the area (846 km2) is suitable or highly suitable for runoff harvesting, while 62% (2623 km2) has a very low potential for this purpose. Afterward, 11 suitable locations were identified to collect runoff. The results indicated that suitable catchments are mainly located on the southern slopes of the Mount Siahkouh as the only major elevation in the area. The storage capacity of the earth embankment in each catchment was estimated based on the upstream area of the catchment and runoff volume. Based on the population of the intended wildlife species and their average water requirement, there is a need for 6500 m3 of drinking water annually. In the best-case scenario and under the circumstance of receiving five rainstorm events a year, only 257 m3 is collectible from all runoff harvesting structures, which is only 4% of the total water demand.


Waterlines ◽  
1986 ◽  
Vol 4 (4) ◽  
pp. 8-9
Author(s):  
Derek Ray
Keyword(s):  

Waterlines ◽  
2003 ◽  
Vol 22 (2) ◽  
pp. 19-21 ◽  
Author(s):  
Rafid Alkhaddar
Keyword(s):  

Author(s):  
Dipak b pawar ◽  
Prashant narote ◽  
Ganesh pawar ◽  
Tushar narote ◽  
Tejas Mhaske ◽  
...  

2017 ◽  
Vol 14 (1) ◽  
pp. 53
Author(s):  
Arwan Apriyono ◽  
Sumiyanto Sumiyanto ◽  
Nanang Gunawan Wariyatno

Gunung Tugel is an area that located Patikraja Region, Southern Banyumas. Thetopography of the area is mostly mountainous with a slope that varies from flat to steep. Thiscondition makes to many areas of this region potentially landslide. In 2015, a landslideoccurred in Jalan Gunung Tugel. The Landslide occurred along 70 meters on the half of theroad and causing traffic Patikraja-Purwokerto disturbed. To repair the damage of the road andavoid further landslides, necessary to analyze slope stability. This study is to analyze landslidereinforcement that occurred at Gunung Tugel and divides into 3 step. The first step is fieldinvestigation to determine the condition of the location and dimensions of landslides. Thesecond step is to know the soil parameters and analyzes data were obtained from the field. Andthe final step is analyzed of the landslide reinforcement by using data obtained from thepreceding step. In this research, will be applied three variations of reinforcement i.e. retainingwall, pile foundation and combine both of pile foundations and retaining wall. Slope stabilityanalysis was conducted using limit equilibrium method. Based on the analysis conducted onthe three variations reinforcement, combine both of pile foundations and retaining wall morerecommended. Application of and combine both of pile foundations and retaining wall is themost realistic option in consideration of ease of implementation at the field. From thecalculations have been done, in order to achieve stable conditions need retaining wall withdimensions of 2 meters high with 2,5 meters of width. DPT is supported by two piles of eachcross-section with 0.3 meters of diameter along 10 meters with 1-meter in space. Abstrak: Gunung Tugel adalah salah satu daerah yang terletak di Kecamatan PatikrajaKabupaten Banyumas bagian selatan. Kondisi topografi daerah tersebut sebagian besar berupapegunungan dengan kemiringan yang bervariasi dari landai sampai curam. Hal inimenyebabkan banyak daerah di wilayah Gunung Tugel yang berpotensi terjadi bencana tanahlongsor. Pada tahun 2015, peristiwa longsor kembali terjadi di ruas Jalan Gunung Tugel.Kelongsoran yang terjadi sepanjang 70 meter pada separuh badan jalan tersebut menyebabkanarus lalu lintas patikraja-purwokerto menjadi terganggu. Untuk memperbaiki kerusakan jalandan mencegah kelongsoran kembali, diperlukan analisis perkuatan tanah terhadap lerengtersebut. Studi analisis penanggulangan kelongsoran jalan yang terjadi di Gunung Tugel inidilakukan dengan tiga tahapan. Tahapan pertama adalah investigasi lapangan untukmengetahui kondisi lokasi dan dimensi longsor serta mengambil sampel tanah di lapangan.Tahap kedua adalah melakukan pengujian parameter tanah dan analisis data yang diperolehdari lapangan. Tahapan yang terakhir adalah analisis penanggulangan longsor denganmenggunakan data yang diperoleh dari tahapan sebelumnya. Pada penelitan ini, akanditerapkan tiga variasi perkuatan lereng yaitu dinding penahan tanah (DPT), turap dan DPTyang dikombinasikan dengan pondasi tiang. Analisis stabilitas lereng dilakukan dengan metodekeseimbangan batas. Berdasarkan hasil analisis yang dilakukan terhadap ketiga variasiperkuatan, DPT dengan kombinasi tiang pancang lebih direkomendasikan. Penerapan DPTyang dikombinasikan dengan minipile merupakan pilihan yang paling realistis denganpertimbangan tingkat kemudahan pelaksanaan di lapangan. Dari perhitungan yang telahdilakukan, untuk mencapai kondisi stabil diperlukan DPT dengan dimensi tinggi 2 meterdengan lebar bawah 2,5 meter. DPT tersebut ditopang oleh dua tiang tiap penampangmelintang dengan diameter 0,3 meter sepanjang 10 meter dengan jarak antar tiang 1 meter.kata kunci: tanah longsor, perkuatan tanah, metode keseimbangan batas


2019 ◽  
Vol 489 (5) ◽  
pp. 478-482
Author(s):  
K. A. Emelyanenko ◽  
S. N. Melnikov ◽  
P. I. Proshin ◽  
A. G. Domantovsky ◽  
A. M. Emelyanenko ◽  
...  

The creation of methods for complete and cost-effective collection of water droplets from an aerosol which arises as a by-product of the low-potential heat uptake from industrial devices, is one of the key tasks of rational use of water resources contributing to the improvement of the environment near large industrial enterprises. This paper shows how the application of materials with extreme wettability and a specific surface topography in spray separators can significantly increase the efficiency of water collection.


Author(s):  
Vladislav Sh. Shagapov ◽  
Ismagilyan G. Khusainov ◽  
Emiliya V. Galiakbarova ◽  
Zulfya R. Khakimova

This article studies the process of relaxation of the pressure in a tank with the damaged area of the wall after pressure-testing. The authors use different methods for the diagnosis of the technical condition of objects of petroleum products storage. Pressure testing is one of nondestructive methods. The rate of pressure decrease is characteristic of the system tightness. This article studies the cases of ground and underground location of the tank. Pressure testing involves excess pressure inside of a tank and observing its decrease. Over time, one can assess the integrity of the system. This has required creating mathematical models to account the filtration of the liquid depending on the location of the tank. The results include the analytical solution of the task and the formulas for describing the dependence of the relaxation time of pressure in the tank from the liquid and soil parameters, geometry of the tank, and the damaged portion of the wall. The two- and three-dimensional cases of liquids filtration for the case of underground location of the tank were considered. The results of some numerical calculations of the dependence of reduction time and the time of half-life pressure from the area of the damaged portion of the wall were shown. The obtained solutions allow assessing the extent of the damaged area by the pressure testing with known values of tank, liquid, and soil.


Sign in / Sign up

Export Citation Format

Share Document