Assessment of Long-Lived Radionuclides (3H, 14C) and Heavy Metals in Snow Cover of Urban Areas as Indicators of Environmental Pollution (St. Petersburg, Russia)

Author(s):  
Sergey V. Lebedev ◽  
Marianna A. Kulkova ◽  
Larisa M. Zarina ◽  
Evgeny M. Nesterov
2020 ◽  
Vol 17 (11) ◽  
pp. 2691-2706
Author(s):  
Magdalena Tanona ◽  
Paweł Czarnota

Abstract The Index of Atmospheric Purity (IAP) is a popular tool used for the assessment of air quality in polluted urban areas, on the basis of phytosociological data of epiphytic lichen communities. We hypothesized that this indicator could also be used in less polluted forest areas to determine the quality of ecological conditions for lichens. The aim of the present study was to verify the use of IAP method in the assessment of environmental pollution, and alternatively for the assessment of general ecological conditions in protected mountain forests of Gorce National Park (Polish Western Carpathians) based on the epiphytic lichen biota associated with Picea abies. The spatial distribution of IAP values on monitored sites in GNP was compared with: 1) spatial distribution of accumulated sulfur, nitrogen, selected heavy metals, and total heavy metals in Hypogymnia physodes thalli in 1993 and 2018 (30 sites), 2) mean ecological indicator values characterizing species requirements for light (L), substrate reaction (R) and nutrients (N), in 1993, 2013 and 2018 (33 sites). Generalized linear model and redundancy analysis were performed for disclosing most influencing factors affecting lichen communities. The study revealed a few negligible relationships between IAP values and accumulation of such elements as Ni, Mn, Cd, and Cr in both monitoring periods. Simultaneously, IAP can be useful for the identification of forest areas with a high degree of naturalness.


2018 ◽  
Vol 69 (8) ◽  
pp. 2150-2159
Author(s):  
Dan Bodescu ◽  
George Ungureanu ◽  
Radu Adrian Moraru ◽  
Ioan Gabriel Sandu ◽  
Costica Bejinariu

The products of honey bees can be used as indicators and monitors of a variety of environmental pollutants because of the bees� ability to collect materials that reflect their immediate environmental conditions. Human activities produce more waste and administrate the pesticides, the amounts and toxicity of which often exceed the environment�s homeostatic capacity to cleanse itself, and this is constantly transforming due to intensive agricultural practices necessary to increase food production as human population grows. The main sources for contamination of honey with heavy metals are represented by placing hives near urban areas with heavy car traffic, or industrialized areas and the use on the entire circuit of production, objects or containers made of materials unsuitable (unacceptable). For that reason regular monitoring of the environment is so important. Honey bees, thanks to their morphological features, and also bee products are regarded as good indicators of environmental pollution by toxic substances, be these heavy metals, radioactive elements or persistent organic pollutants such as pesticides. Consequently, it is important to estimate the environmental fate and Eco toxicological effects of these different xenobiotic. Honey bees (Apis mellifera L.) have been used as biological indicators of Plant Protection Products (PPPs) in two intensely cultivated in areas of Neamt County, Romania. This area is representative for the pre-mountain and mountain zone of Romania. The stratified sample has been face-to-face interviewed in 2016 regarding the data from the year 2015. The total consumption specific for the honey production was about 628 MJ hive-1, and the energy output reached 235 MJ hive-1, determining an energy productivity of 0.030 kg MJ-1 and an energy use efficiency of 0.37. Specific energy amounted 33.3MJ kg-1 due to the inefficiency of traveling during the apiaries movements and the inappropriate correlation between the apiaries size and the zonal melliferous potential. In this paper available literature data and information on the morphological features of the honey bee, the utilization of the honey bee and its products as indicators of environmental pollution, and a historical outline of some of the legislation relating to beekeeping have been critically compared and discussed.


1974 ◽  
Vol 31 (7) ◽  
pp. 1165-1171 ◽  
Author(s):  
D. A. Ratkowsky ◽  
S. J. Thrower ◽  
I. J. Eustace ◽  
June Olley

Inferential techniques of numerical classification and principal coordinate analysis have been used to interpret data obtained on the Zn, Cd, and Cu concentration of 48 samples of oysters, comprising 473 individuals, grown at a variety of places around the Tasmanian coastline. A close association was obtained between proximity to heavily urbanized areas and concentration of metals found, oysters growing nearest urban areas having the highest concentrations of one or more of the metals. It appears that areas for commercial oyster growing should be sought in regions far from centers of urbanization and industrialization. Examination of samples of native oysters could be useful in providing an index or measure of environmental pollution.


2019 ◽  
Author(s):  
V.B. Kalmanova

В статье представлены результаты исследования экологогеохимического состояния снежного покрова как индикатора качества атмосферного воздуха г. Биробиджана. Выявлены основные природные и антропогенные факторы, предопределяющие экологическое состояние городской территории в зимний период (климатические, планировочная структура, стационарные и мобильные источники загрязнения). Определено, что выбросы основных загрязнителей во время отопительного сезона превышает летний в 6,5 раз. Проведены геохимические исследования снежного покрова на 60 экспериментальных площадках, заложенных в различных функциональных зонах города. Выявлено значительное превышение тяжелых металлов над фоновым уровнем: железа до 60, марганца до 50, меди до 40, цинка до 20, никеля до 12, свинца до 10, кобальта до 6 раз. С 2003 по 2018 годы содержание химических элементов в снеге увеличилось в 2 раза за счет мобильных источников загрязнения, ТЭЦ, котельных. Проведена сравнительная характеристика накопления тяжелых металлов в снеге за 2003 и 2018 годы и установлен ранжированный ряд загрязняющих токсичных веществ. Разработана шкала оценки загрязнения депонирующих сред по суммарному показателю концентрации тяжелых металлов, согласно которой в Биробиджане выявлено 5 уровней загрязнения снежного покрова. В целом экологическое состояние урбанизированной территории признано неудовлетворительным (8 площади территории относится к очень высокому, 14 к высокому, 21 к выше среднему, 27 к среднему уровням загрязнения, 30 к относительно чистым районам города). По полученным результатам разработана карта в программе ArcView GIS Экологогеохимическое районирование территории г. Биробиджана по уровню загрязнения снежного покрова с выделением наиболее загрязненных участков (70 от общей площади города является загрязненной). По результатам проведенных исследований предложены конструктивные методы планирования урбанизированной территории с целью улучшения ее экологического состояния: проведение геомониторинга (контроль загрязнения снежного покрова и своевременный его вывоз на специально оборудованные полигоны). Snow cover is taken as an indicator of air quality using Birobidzhan, a middlesize city in the Russian Far East, as a case study. The main natural and manmade determinants influencing the ecological state of the urban area in winter are identified: climate, a planning structure, and the stationary and mobile sources of pollution. During the heating season the emission of major pollutants exceeds the summer level by 6.5 times. The geochemical study of snow cover was performed at 60 experimental sites in different functional urban areas. A significant excess of heavy metals over the regional background level was revealed: iron up to 60 times, manganese up to 50, copper up to 40, zinc up to 20 , nickel up to 12, lead up to 10, cobalt up to 6 times. From 2003 to 2018 the content of chemical elements in snow increased in 2 times due to the mobile sources of pollution, thermal power plants, and boilers. The comparative characteristic of accumulation of heavy metals in snow for 2003 and 2018 is carried out, and the ranked number of polluting toxic substances is established. The scale of pollution assessment in depositing environments was developed using the cumulative indicator of heavy metal concentration. Five levels of snow cover pollution are found in Birobidzhan: low, moderate, above moderate, high and very high. As a whole, the ecological state of the urban area is considered as unsatisfactory (8 of the area with a very high level of pollution, 14 with high, 21 above moderate, 27 a moderate level of pollution, 30 a relatively clean area). According to the results, a map was developed in the ArcView GIS program Ecological and geochemical zoning of Birobidzhan, using the level of the snow cover pollution with the allocation of the most polluted areas (70 of the total area of the city is polluted). According to the results, a constructive method of planning in an urban area is proposed in order to improve its environmental condition: geomonitoring as a control of pollution in snow cover and its prompt removal to specially equipped landfills.


Water ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2161
Author(s):  
Fuxiang Zhang ◽  
Bo Meng ◽  
Shang Gao ◽  
Rupert Hough ◽  
Peng Hu ◽  
...  

Snow cover is a unique environmental medium in cold regions that can cause potential risks to the ecological environment, due to the release of pollutants that are stored in it. In this study, the Qixing River wetland, located in the Sanjiang Plain of China, was taken as the target research area. Heavy metals in snow cover, including Cu, Ni, Cr, Cd, Pb, and Zn were measured at 19 sampling sites. The results showed that the average concentrations of heavy metals were: Zn (103.46 ± 39.16) > Pb (13.08 ± 4.99) > Cr (11.97 ± 2.82) > Ni (9.55 ± 4.96) > Cu (6.19 ± 1.79) > Cd (0.55 ± 0.25) μg·L−1. Cr and Zn were between Class I and Class II in the “Environmental Quality Standards for Surface Water” of China (GB3838-2002). Pb in snow exceeded the upper limit of Class II, and was significantly higher than concentrations measured in water samples from the Qixing River wetland (p < 0.05), indicating that atmospheric deposition during winter was the major source of Pb. The water pollution index (WPI) indicated that 61.0% of samples could be considered of “clean” status, while the contribution of Zn, Pb, and Cr to WPI were 33.3%, 21.0%, and 19.3%, respectively. A preliminary evaluation of heavy metal inventory in snow cover showed that the residue level of Zn was the highest (2313.57 ± 1194.67 μg·m−2), while Cd was the lowest (13.91 ± 10.45 μg·m−2). The areas with high residues of heavy metals were all located near the buffer zone of the wetland (except for Zn), where snow depth tended to be greatest. Exposure analysis indicated that the risks to winter resident birds from snow ingestion was minimal, but it should be noted that the exposure risk was higher in birds with lower bodyweights. This study provides important information and scientific knowledge on the pollution characteristics and residue inventory of heavy metals in wetland ecosystems, while the results can also provide a monitoring method, reflecting atmospheric environmental quality at a local or regional scale.


2021 ◽  
Author(s):  
Concepcion Pla ◽  
Javier Valdes-Abellan ◽  
Miguel Angel Pardo ◽  
Maria Jose Moya-Llamas ◽  
David Benavente

&lt;p&gt;The impervious nature of urban areas is mostly responsible for urban flooding, runoff water pollution and the interception of groundwater recharge. Green infrastructure and sustainable urban drainage systems combine natural and artificial measures to mitigate the abovementioned problems, improving stormwater management and simultaneously increasing the environmental values of urban areas. The actual rate of urban growth in many urban areas requires the enhancement and optimization of stormwater management infrastructures to integrate the territorial development with the natural processes. Regarding the quality of runoff stormwater, heavy metals are critical for their impact on human health and ecological systems, even more if we consider the cumulative effect that they produce on biota. Thus, innovative stormwater management approaches must consider new solutions to deal with heavy metal pollution problems caused by runoff. In this study, we propose the employment of Arlita&lt;sup&gt;&amp;#174;&lt;/sup&gt; and Filtralite&lt;sup&gt;&amp;#174;&lt;/sup&gt;, two kind of lightweight aggregates obtained from expanded clays, to remove heavy metal concentration from runoff stormwater. Laboratory experiments were developed to evaluate the removal rate of different heavy metals existent in runoff stormwater. The lightweight aggregates acted as filter materials in column experiments to quantify their removal capacity. In addition, batch tests were also developed to evaluate the exhaustive capacity of the materials. Results from the study confirmed the efficiency of the selected lightweight aggregates to reduce the heavy metals concentration by up to 90% in urban stormwater runoff.&lt;/p&gt;


2021 ◽  
Author(s):  
Olga Gavrichkova ◽  
Dario Liberati ◽  
Viktoriya Varyushkina ◽  
Kristina Ivashchenko ◽  
Paolo De Angelis ◽  
...  

&lt;p&gt;Release of heavy metals, salts and other toxic agents in the environment is of increasing concern in urban areas. Contaminants not solely decline the quality of the local environment and affect the health of human population and urban ecosystems but are also spread through runoff and leaching into non-contaminated areas. Urban lawns are the most distributed green infrastructure in the cities. Management of lawn system may either exacerbate the negative effects of contaminants on lawn functioning either help to withstand the toxic effects and maintain the lawn ecosystem health and the efficient release of ecosystem services. &amp;#160;&lt;/p&gt;&lt;p&gt;The aim of this study was to evaluate the interactions between the lawn management, the lawn functioning, and the release into the soil of typical urban contaminants. For this purpose, &lt;em&gt;Festuca arundinacea&lt;/em&gt; grass was planted in a turf-sand mixture with and without amendment addition (zeolite + vermicompost). To reproduce the impact of traffic-related contaminants in proximity of the road, pots were treated with a solution containing de-icing salt (NaCl) and 6 heavy metals (Zn, Cd, Pb, Cr, Cu, Ni), imitating road runoff solution. After contamination, half of pots was maintained at optimum soil water content (Smart irrigation), another half was left to periodical drying in order to simulate conditions with discontinuous watering (Periodical irrigation). The same experimental scheme was reproduced for unplanted soil. CO&lt;sub&gt;2&lt;/sub&gt; net ecosystem exchange (NEE), soil and ecosystem respiration as well as flux from unplanted soil (heterotrophic respiration) were measured shortly after the treatment (short-term) and up 3 months since the treatment start (long-term).&lt;/p&gt;&lt;p&gt;Soil amendment stimulated plant productivity and increased the efficiency of the system in C uptake (+56% NEE). A relevant reduction of NEE was observed from 14 to 40 days after the application of traffic-related contaminants in both amended and non amended pots. During this period the contaminants had the greatest impact on lawn NEE subjected to Periodic irrigation (-49% and -66% in amended and non amended pots, respectively), while lawn under Smart irrigation was less affected (-35% and -26% in amended and non amended pots, respectively). Different respiration sources (ecosystem respiration, soil respiration, heterotrophic respiration) were characterized by different sensitivity to management and contamination. Heterotrophic flux was not sensitive to soil amending but declined with contamination with enhanced negative effect under Smart irrigation. Response of ecosystem respiration to contamination was less pronounced in confront to soil respiration suggesting leaf-level buffering.&amp;#160; &amp;#160;&amp;#160;&lt;/p&gt;&lt;p&gt;Three months later,&amp;#160; the effect of contaminants on lawn gas exchange ceased for all treated pots. Instead, the irrigation effect persisted depending on whether pots were amended or not. In non amended pots NEE was reduced by 18% under Periodic irrigation, while this effect was not present in amended pots. We conclude, that performance of such green infrastructure as lawns in terms of C sequestration under multiple anthropogenic stressors could be efficiently improved through soil amending and irrigation control.&lt;/p&gt;&lt;p&gt;Current research was financially supported by RFBR No. 19-29-05187 and RSF No. 19-77-30012.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document