Assessment of Tool Wear Intensity Based on the Frequency Pattern

Author(s):  
Anna Zawada-Tomkiewicz ◽  
Dariusz Tomkiewicz
2012 ◽  
Vol 252 ◽  
pp. 310-314
Author(s):  
Jian Dong Yang ◽  
Chuang Liu ◽  
Hui Yan

This paper proposes a new method of controlling abrasives density distribution on the machining surface of a lapping tool making full use of controllability of abrasives density distribution in solid abrasive lapping, based on the present actual problems in solid abrasive lapping blind holes in manufacturing process. This method makes the abrasives density distribution on the lapping tool surface fit the wear intensity distribution of lapping tool, which makes the lapping tool wear uniformly in this manufacturing process, does not lose its original surface accuracy, ensures shape accuracy of the machined holes of the workpiece, also avoids the trouble of dressing lapping tools, reduces auxiliary machining time, improves machining efficiencies, reduces the consumption of abrasives and reduces machining costs of the manufacturing process.


Author(s):  
Anna Zawada-Tomkiewicz ◽  
Łukasz Żurawski ◽  
Dariusz Tomkiewicz ◽  
Filip Szafraniec

AbstractThe article is devoted to the study of the effect of cryogenic cooling on the tool wear in thread turning tests. The tool wear and its influence on the thread accuracy were investigated. Two different grades of titanium alloys were used for comparative purposes. The excellent performance characteristics of titanium alloys pose machining problems, causing high unit forces at the edge of the tool leading to chipping and premature tool failure. In turn, the low thermal conductivity of pure titanium affects the heat distribution in the cutting zone. The heat is not absorbed by the material being machined but accumulates in the tool, causing an increase in diffusion and chemical wear. The results of cutting tests using liquid nitrogen showed lower values of wear on the major and minor tool flank. The edge reduction of the tool was also significantly less during cryogenic machining. The analysis of the formation of wear marks and the blade wear mechanisms was carried out for the tool rake face. The tests were carried out using the SEM method and confirmed by EDS analyses. In order to compare the course of tool wear over time, a mathematical model was developed, which results from the course of phenomena during cutting. It consists of two complementary equations. The first equation is characteristic for the first cutting phase and results from the loads imposed on the blade and aims at thermodynamic equilibrium. It is a period of stable tool operation and constant wear intensity. The second equation concerns crossing the equilibrium point followed by the process of accumulation of elementary wear phenomena. These phenomena accumulate until the blade is completely worn-out. The use of blade wear development models to determine the expected blade life allowed to confirm the beneficial effect of cryogenic cooling on the course of the blade wear process when cutting threads for two different titanium alloys.


Tribologia ◽  
2018 ◽  
Vol 277 (1) ◽  
pp. 7-10
Author(s):  
Vyacheslav F. BEZYAZYCHNY ◽  
Marian SZCZEREK ◽  
V.V. NEPOMILUEV ◽  
Z.W. KISELEV

The paper highlights the methods to define wear intensity of cutting tools using the theory of similarity. The dimensionless numbers of the cutting procedures, which are necessary in calculating cutting tool wear intensity, are defined with regard to the cutting conditions, cutting tool geometry, and the physico-mechanical properties of the work stock and the tool materials.


1970 ◽  
Vol 3 (2) ◽  
Author(s):  
A.K.M.N. AMIN, M. IMRAN AND M. ARIF

Stainless steels are a group of difficult to machine work materials. The difficulty in machining stainless steels is manifested in high contact length and stresses, formation of serrated chips and development of chatter resulting in high tool wear rates and poor machined surface finish. The paper focuses on the performance of TiN coated-carbide inserts in machining stainless steel specimens in end milling operation performed on vertical machining centre (VMC). The performance of the tool is evaluated from the point of view of its wear intensity, mechanism of failure and generation and effect of chatter on tool wear and vice versa. The investigations were aimed at determining the effect of cutting parameters, specifically cutting speed, feed and depth of cut, on chatter amplitude, tool wear rate, mechanism of tool wear and using these data and machined surface roughness values from previous work to come up with recommended values of cutting parameters for semi-finish and finish end milling operation of stainless steel work materials. For recording vibration signals a dual channel portable signal analyzers was used and the signals were analyzed using Pulse Multi-analyzer version 4.2 software. Tool wear was measured using an optical microscope with digital readout capabilities along 3 axes. The tool wear mechanisms were studied under a scanning electron microscope (SEM). Results of the investigation show that acceleration amplitudes generally increase with cutting speed and the magnitude of tool flank wears. It has been also found that an increase in feed and depth of cut leads to higher acceleration amplitudes. The most common wear mechanisms observed during machining of stainless steel are attrition, micro and macro chipping of the tool at lower cutting speeds, and diffusion and mechanical failures due to intensive chatter at higher speeds. It has been also established that stable cutting speeds with relatively low tool wear intensity and satisfactory machined surface finish can be achieved through proper selection of cutting parameters. A table of recommended cutting conditions has been developed for almost chatter free machining with low tool wear intensity and satisfactory surface finish. Key Words: Vertical Machining Centre, Machinability, Chatter, Cutting, Tool life.


2017 ◽  
Vol 192 ◽  
pp. 410-415 ◽  
Author(s):  
Roman Kameník ◽  
Jozef Pilc ◽  
Daniel Varga ◽  
Juraj Martinček ◽  
Marek Sadílek

2000 ◽  
Vol 10 (PR9) ◽  
pp. Pr9-541-Pr9-546 ◽  
Author(s):  
A. Molinari ◽  
M. Nouari

Author(s):  
Diego de Medeiros Barbosa ◽  
Leticia Helena Guimarães Alvarinho ◽  
Aristides Magri ◽  
Daniel Suyama

2020 ◽  
Vol 38 (9A) ◽  
pp. 1406-1413
Author(s):  
Yousif Q. Laibia ◽  
Saad K. Shather

Electrical discharge machining (EDM) is one of the most common non-traditional processes for the manufacture of high precision parts and complex shapes. The EDM process depends on the heat energy between the work material and the tool electrode. This study focused on the material removal rate (MRR), the surface roughness, and tool wear in a 304 stainless steel EDM. The composite electrode consisted of copper (Cu) and silicon carbide (SiC). The current effects imposed on the working material, as well as the pulses that change over time during the experiment. When the current used is (8, 5, 3, 2, 1.5) A, the pulse time used is (12, 25) μs and the size of the space used is (1) mm. Optimum surface roughness under a current of 1.5 A and the pulse time of 25 μs with a maximum MRR of 8 A and the pulse duration of 25 μs.


Sign in / Sign up

Export Citation Format

Share Document