scholarly journals Rainfall Variability and Adaptation of Tomatoes Farmers in Santa: Northwest Region of Cameroon

Author(s):  
Majoumo Christelle Malyse

AbstractThe Santa agrarian basin being one of the main market gardening basins in Cameroon and one of the producers of tomatoes in the country is vulnerable to the impact of rainfall variability. The spatiotemporal variability of rainfall through the annual, monthly, and daily fluctuations has greatly affected the market gardening sector in general and tomatoes production in particular. Thus, given rise to the research topic “Rainfall variability and adaptation of tomatoes farmers in Santa North west region of Cameroon,” its principal objective is to contribute to better understanding of the recent changes occurring in tomatoes production and productivity in Santa. To attain this objective, a principal hypothesis was formulated that rainfall variability instead of unnatural conditions or human constraints justifies changes observed in tomatoes production in Santa and resulting adaptation strategies developed by peasants and stakeholders.Our study came out with several findings, among which includes rainfall events in Santa fluctuate in time and in space with reduction in the number of rainy day and increase in the intensity of rainfall events causing soil erosion, infertility, and frequent crop diseases, insects, and pests. Extreme events such as drought and flooding have equally become frequent in the area especially during the different cycles of tomatoes production disrupting the agricultural calendar and causing crop failure and decrease in yields with Pearson’s correlation of 0.017. This positive value shows that there is a relationship between annual rainfall and tomatoes output in Santa. Tomatoes farmers in Santa are struggling to adapt locally to this situations, but their efforts are still limited especially due to their low level of education and poverty. Finally, it was seen that the output of tomatoes over the years in Santa has a strong correlation with rainfall. Based on the findings of this study, the government is called upon to assist farmers in their adaptation options.

2021 ◽  
Vol 893 (1) ◽  
pp. 012006
Author(s):  
F Aditya ◽  
E Gusmayanti ◽  
J Sudrajat

Abstract Climate change has been a prominent issue in the last decade. Climate change on a global scale does not necessarily have the same effect in different regions. Rainfall is a crucial weather element related to climate change. Rainfall trends analysis is an appropriate step in assessing the impact of climate change on water availability and food security. This study examines rainfall variations and changes at West Kalimantan, focusing on Mempawah and Kubu Raya from 2000-2019. The Mann-Kendall (MK) and Sen's Slope estimator test, which can determine rainfall variability and long-term monotonic trends, were utilized to analyze 12 rainfall stations. The findings revealed that the annual rainfall pattern prevailed in all locations. Mempawah region tends to experience a downward trend, while Kubu Raya had an upward trend. However, a significant trend (at 95% confidence level) was identified in Sungai Kunyit with a slope value of -33.20 mm/year. This trend indicates that Sungai Kunyit will become drier in the future. The results of monthly rainfall analysis showed that significant upward and downward trends were detected in eight locations. Rainfall trends indicate that climate change has occurred in this region.


2018 ◽  
Vol 437 ◽  
pp. 92-100 ◽  
Author(s):  
Alexis D. Synodinos ◽  
Britta Tietjen ◽  
Dirk Lohmann ◽  
Florian Jeltsch

2018 ◽  
Vol 09 (08) ◽  
pp. 43-49
Author(s):  
Thileepan, K. ◽  
Sivakumar, S.S.

Sri Lanka is a tropical nation, is highly vulnerable to impacts of climate change. As a small in the Indian Ocean, the coastal region of the Sri Lanka is susceptible to change in sea level. The impact of climate change are widespread and they are likely to create negative socio economic outcomes on many sectors in Srilanka. Traditionally Srilanka has been generalized into three climate zones, namely wet zone, dry zone and intermediate zone. The research area Vavuniya is comes under the dry zone.The dry zone receives a mean annual rainfall of less than 1750 mm with a distinct dry season from may to september. Even though, the established patterns of rainfall have changed in the area. Almost the district is annually affected by the water related disasters. There were lot of polices and stratergic plans carried out by the government to reduce the water related disasters. The water related disasters in this area can be mitigate by proper water resource auditing and intergrated development approaches. This research aims finally to spell out to predict the real sitivuation of the area by collecting the data from the relavent departments and proposes the assessment to improve the current practices in this region


2021 ◽  
Vol 17 (1) ◽  
pp. 19-25
Author(s):  
Virendra N. Barai ◽  
Rohini M. Kalunge

The long-term behaviour of rainfall is necessary to study over space with different time series viz., annual, monthly and weekly as it is one of the most significant climatic variables. Rainfall trend is an important tool which assesses the impact of climate change and provides direction to cope up with its adverse effects on the agriculture. Several studies have been performed to establish the pattern of rainfall over various time periods for different areas that can be used for better agricultural planning, water supply management, etc. Consequently, the present report, entitled “Trend analysis of rainfall in Ahmednagar district of Maharashtra,” was carried out. 13 tahsils of the district of Ahmednagar were selected to carry out trend analysis. The daily rainfall data of 33 years (1980- 2012) of all stations has been processed out study the rainfall variability. The Mann Kendall (MK) Test, Sen’s slope method, moving average method and least square method were used for analysis. The statistical analysis of whole reference time series data highlighted that July and August month contributes highest amount of rainfall at all tahsils. Regarding trend in annual rainfall, these four methods showed increasing trend at most of the tahsils whereas a decreasing trend only at Shrigonda tahsil. For monthly trend analysis, Kopargaon, Newasa, Shevgaon and Shrirampur tahsils showed an increasing trend during July. During August and September month, most of the tahsils i.e. Kopargaon, Nagar, Parner and Sangamner showed increasing trends, whereas in June, only Shrigonda tahsil showed decreasing trend.


2020 ◽  
Author(s):  
Dani Or ◽  
Peter Lehmann ◽  
Samuel Bickel ◽  
Simone Fatichi

<p>Arid lands represent one third of terrestrial surfaces with ecosystems uniquely adapted to water limitations. Arid regions are characterized by low rainfall and sparse vegetation with potential evapotranspiration (ET<sub>0</sub>) exceeding annual rainfall (P) and surface evaporation dominating water losses. The objective was to quantify the fraction of rainwater sheltered from surface evaporation to estimate arid region vegetation carrying capacity. The surface evaporation capacitor (SEC) model was used to quantify surface evaporation from the climatic record of rainfall and potential evaporation. The SEC uses soil-specific active evaporation depth where only rainfall events that exceed its critical capacitance result in leakage into deeper layers. This “leakage” becomes protected from surface evaporation and may support vegetation or inter-annual storage. Focusing on arid regions (aridity index P/ET<sub>0</sub>< 0.2) we illustrate the strong correlation between evaporation-protected rainwater and net primary productivity (NPP) using typical values of water use efficiency. SEC-estimated NPP values were in good agreement with observations and predictions by a state-of-the art ecohydrological model (T&C). Evaporation-protected soil water storage is generated during a few large rainfall events that exceed surface capacitance. This leakage increases with increasing rainfall variability, potentially enhancing vegetation carrying capacity by diverting larger fractions of rainfall from surface evaporation to vegetation-supporting “leakage”. The potential increase in carrying capacity and resulting vegetation cover are greatly influenced by (i) the change in rainfall variability, (ii) soil type, and (iii) surface features that concentrate or divert runoff. We discuss implications of this mechanism for global greening of arid lands and woody plant encroachment.</p>


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1477
Author(s):  
Mohammed Achite ◽  
Tommaso Caloiero ◽  
Andrzej Wałęga ◽  
Nir Krakauer ◽  
Tarek Hartani

In the context of climate variability and hydrological extremes, especially in arid and semi-arid zones, the issue of natural risks and more particularly the risks related to rainfall is a topical subject in Algeria and worldwide. In this direction, the spatiotemporal variability of precipitation in the Wadi Cheliff basin (Algeria) has been evaluated by means of annual time series of precipitation observed on 150 rain gauges in the period 1970–2018. First, in order to identify the natural year-to-year variability of precipitation, for each series, the coefficient of variation (CV) has been evaluated and spatially distributed. Then, the precipitation trend at annual scale has been analyzed using two nonparametric tests. Finally, the presence of possible change points in the data has been investigated. The results showed an inverse spatial pattern between CV and the annual rainfall, with a spatial gradient between the southern and the northern sides of the basin. Results of the trend analysis evidenced a marked negative trend of the annual rainfall (22% of the rain gauges for a significant level equal to 95%) involving mainly the northern and the western-central area of the basin. Finally, possible change points have been identified between 1980 and 1985.


2021 ◽  
Author(s):  
Ibrahim NJOUENWET ◽  
Lucie A. Djiotang Tchotchou ◽  
Brian Odhiambo Ayugi ◽  
Guy Merlin Guenang ◽  
Derbetini A. Vondou ◽  
...  

Abstract The Sudano-Sahelian region of Cameroon is mainly drained by the Benue, Chari and Logone rivers, which are very useful for water resources, especially for irrigation, hydropower generation, and navigation. Long-term changes in mean and extreme rainfall events in the region may be of crucial importance in understanding the impact of climate change. Daily and monthly rainfall data from twenty-five synoptic stations in the study area from 1980 to 2019 and extreme indices from the Expert Team on Climate Change Detection and Indices (ETCCDI) measurements were estimated using the non-parametric Modified Mann-Kendall test and the Sen slope estimator. The precipitation concentration index (PCI), the precipitation concentration degree (PCD), and the precipitation concentration period (PCP) were used to explore the spatio-temporal variations in the characteristics of rainfall concentrations. An increase in extreme rainfall events was observed, leading to an upward trend in mean annual. Trends in consecutive dry days (CDD) are significantly increasing in most parts of the study area. This could mean that the prevalence of drought risk is higher in the study area. Overall, the increase in annual rainfall could benefit the hydro-power sector, agricultural irrigation, the availability of potable water sources, and food security.


MAUSAM ◽  
2021 ◽  
Vol 71 (4) ◽  
pp. 687-698
Author(s):  
PATIL ARCHANA D. ◽  
HIRE PRAMODKUMAR S.

The objective of present work is to understand flood hydrometeorological situations associated with monsoon floods on the Par River, therefore, the analyses of synoptic conditions connected with large floods was carried out. This encompasses analysis of interannual rainfall variability and associated floods, analysis of storm tracts, investigation of normalized accumulated departure from mean (NADM) and evaluation of the relation between El Niño and monsoon rainfall. In order to accomplish above analyses, the annual rainfall data of the Par Basin have been obtained for 118 years from India Meteorological Department (IMD), Pune and Chennai. The annual maximum series (AMS)/stage data were procured for a gauging site namely Nanivahial for 45 years from Irrigation Department of Gujarat State, Ahmedabad.  The results indicate that the interannual variability was characterized by increased frequency and magnitude of floods on the Par River primarily after 1930s. Majority of the large floods in the basin were connected with low pressure systems. It is observed that most of the floods were associated with positive departure from mean rainfall in the basin. The NADM graph shows epochal behaviour of high and low rainfall of the basin and floods.  The analysis of El Niño and Southern Oscillation indicates that the probability of the occurrence of the floods in the Par Basin is high during the average SST index and majority of the floods in the basin have occurred during above normal conditions of rainfall. The present study can, therefore, prove to be a significant contribution towards the Par-Tapi-Narmada link project of the Government of Gujarat and water divergent projects of the Government of Maharashtra in association with Government of India.


2021 ◽  
Vol 13 (19) ◽  
pp. 11047
Author(s):  
Mary Nsabagwa ◽  
Anthony Mwije ◽  
Alex Nimusiima ◽  
Ronald Inguula Odongo ◽  
Bob Alex Ogwang ◽  
...  

The changing climate has negatively impacted food systems by affecting rainfall patterns and leading to drought, flooding, and higher temperatures which reduce food production. This study examined the ability of communities to cope with food insecurity due to the changing climate in the Serere and Buyende districts, which are two different agro-ecological zones of Uganda. We administered 806 questionnaires to households, a sample size which was determined using Yamane’s formula, with the snowball sampling method used to select the households. The questionnaire sought information, including that regarding the respondents’ resources, the effects of climate change on households, and the coping mechanisms employed to reduce the impact of climate change on food security. The data collected was coded and analyzed using the statistical package for the social sciences (SPSS). Agriculture was found to be the main source of income for 42.4% of male adults and 41.2% of female adults in Serere. In Buyende, 39.9% of males and 33.7% of females rely on selling animal, poultry, and food crops. Aggregate results further showed that 58.3% of females and 42.2% of the males from both districts had suffered from the impacts of climate change, and that the effects were more evident between March and May, when communities experienced crop failure. The study further found that the percentage of households who had three meals a day was reduced from 59.7% to 43.6%, while the number of households with no major meals a day increased from 1.3% to 1.6%. We also found that 34.3% of households reported buying food during periods of crop failure or food scarcity. Moreover, despite reporting an understanding of several coping mechanisms, many households were limited in their ability to implement the coping mechanisms by their low incomes. This reinforced their reliance on affordable mechanisms, such as growing drought-resistant crops (32.7%), rearing drought-resistant livestock breeds (26.1%), and reducing the number of meals a day (14.5%), which are mechanisms that are insufficient for solving all the climate-related food insecurity challenges. We recommend that the government intervenes by revising policies which help farmers cope with the negative effects of climate change, promoting the sensitization of farmers to employing the coping mechanisms, and subsidizing agricultural inputs, such as resistant varieties of crops, for all to afford.


2019 ◽  
Vol 11 (22) ◽  
pp. 2688 ◽  
Author(s):  
Ashebir Sewale Belay ◽  
Ayele Almaw Fenta ◽  
Alemu Yenehun ◽  
Fenta Nigate ◽  
Seifu A. Tilahun ◽  
...  

The spatio-temporal characteristic of rainfall in the Beles Basin of Ethiopia is poorly understood, mainly due to lack of data. With recent advances in remote sensing, satellite derived rainfall products have become alternative sources of rainfall data for such poorly gauged areas. The objectives of this study were: (i) to evaluate a multi-source rainfall product (Climate Hazards Group Infrared Precipitation with Stations: CHIRPS) for the Beles Basin using gauge measurements and (ii) to assess the spatial and temporal variability of rainfall across the basin using validated CHIRPS data for the period 1981–2017. Categorical and continuous validation statistics were used to evaluate the performance, and time-space variability of rainfall was analyzed using GIS operations and statistical methods. Results showed a slight overestimation of rainfall occurrence by CHIRPS for the lowland region and underestimation for the highland region. CHIRPS underestimated the proportion of light daily rainfall events and overestimated the proportion of high intensity daily rainfall events. CHIRPS rainfall amount estimates were better in highland regions than in lowland regions, and became more accurate as the duration of the integration time increases from days to months. The annual spatio-temporal analysis result using CHIRPS revealed: a mean annual rainfall of the basin is 1490 mm (1050–2090 mm), a 50 mm increase of mean annual rainfall per 100 m elevation rise, periodical and persistent drought occurrence every 8 to 10 years, a significant increasing trend of rainfall (~5 mm year−1), high rainfall variability observed at the lowland and drier parts of the basin and high coefficient of variation of monthly rainfall in March and April (revealing occurrence of bimodal rainfall characteristics). This study shows that the performance of CHIRPS product can vary spatially within a small basin level, and CHIRPS can help for better decision making in poorly gauged areas by giving an option to understand the space-time variability of rainfall characteristics.


Sign in / Sign up

Export Citation Format

Share Document