Research of Dynamic Stress on Assembly Process of Interference Fit Between Axle and Hole of Planetary Gear

Author(s):  
Mengya Zhang ◽  
Yanhui Cai ◽  
Kun Chen ◽  
Jie Mei ◽  
Xiaofei Yin ◽  
...  
Author(s):  
Jonas Gnauert ◽  
Felix Schlüter ◽  
Georg Jacobs ◽  
Dennis Bosse ◽  
Stefan Witter

AbstractWind turbines (WT) must be further optimized concerning availability and reliability. One of the major reasons of WT downtime is the failure of gearbox bearings. Some of these failures occur, due to the ring creep phenomenon, which is mostly detected in the planetary bearings. The ring creep phenomenon describes a relative movement of the outer ring to the planetary gear. In order to improve the understanding of ring creep, the finite element method (FEM) is used to simulate ring creep in planetary gears. First, a sensitivity analysis is carried out on a small bearing size (NU205), to characterize relevant influence parameters for ring creep—considered parameters are teeth module, coefficient of friction, interference fit and normal tooth forces. Secondly, a full-scale planetary bearing (SL185030) of a 1MW WT is simulated and verified with experimental data.


2021 ◽  
Vol 0 (1) ◽  
pp. 2020002-0
Author(s):  
Kedong BI ◽  
◽  
◽  
Zhengming RUI ◽  
Lingchong XUE ◽  
...  

Author(s):  
El-Sayed Aziz ◽  
Yizhe Chang ◽  
Sven K. Esche ◽  
Constantin Chassapis

Recently, multi-player game engines have been explored regarding their potential for implementing virtual laboratory environments for engineering and science education. In these developments, the virtual assembly process of the laboratory equipment is a critical step, and a detailed formalized description of how different components of the experimental equipment are to be joined in the assembly process is necessary. This description includes the joint types (lower and upper kinematic pairs) and the associated degrees of freedom, the resulting mobility of the assembly as well as the joint fit requirements. In this paper, a formalized representation of the assembly process that captures the information on the joint kinematics and the components’ degrees of freedom generated when assembling laboratory equipment in a virtual laboratory environment will be discussed. A planetary gear train system will be used as an example to illustrate the proposed method. In particular, the structure of the assembly of a planetary gear train system involves assembly constraints between a group of components (sun, planet and ring gears, shafts, planet carrier assembly, etc.) that generate the desired relationship between the input and output motions. This paper will identify important requirements for modeling different configurations of planetary gear train assemblies within a game-based virtual laboratory environment. These requirements include the positioning and the orienting of the components, the verification of the kinematic joints, the propagation of the mating constraints and the capturing of the joint attributes.


2015 ◽  
Vol 645-646 ◽  
pp. 1016-1023 ◽  
Author(s):  
Juan Zhang ◽  
Wen Rong Wu ◽  
Fei Shen ◽  
Yong Jun Deng

To assemble easily damaged micro-parts safely in interference fit way, the assembly process is designed and the interaction force in assembly process is analyzed. The pose of micro-parts is aligned based on calibration of three microscopic vision systems from different directions. In addition, a control strategy based on feedback of vision and force is proposed to assemble safely. In the case of two micro-parts just contact, position of micro-part is adjusted based on force information to compensate pose alignment error and keep force in safe range. When micro-part is deformed as increased contact force, position of micro-part is adjusted based on force in the interference fit process and deformation of micro-part. Experimental results demonstrate the effectiveness of proposed methods.


2020 ◽  
Vol 64 (1-4) ◽  
pp. 137-145
Author(s):  
Yubin Xia ◽  
Dakai Liang ◽  
Guo Zheng ◽  
Jingling Wang ◽  
Jie Zeng

Aiming at the irregularity of the fault characteristics of the helicopter main reducer planetary gear, a fault diagnosis method based on support vector data description (SVDD) is proposed. The working condition of the helicopter is complex and changeable, and the fault characteristics of the planetary gear also show irregularity with the change of working conditions. It is impossible to diagnose the fault by the regularity of a single fault feature; so a method of SVDD based on Gaussian kernel function is used. By connecting the energy characteristics and fault characteristics of the helicopter main reducer running state signal and performing vector quantization, the planetary gear of the helicopter main reducer is characterized, and simultaneously couple the multi-channel information, which can accurately characterize the operational state of the planetary gear’s state.


1989 ◽  
Vol 17 (4) ◽  
pp. 305-325 ◽  
Author(s):  
N. T. Tseng ◽  
R. G. Pelle ◽  
J. P. Chang

Abstract A finite element model was developed to simulate the tire-rim interface. Elastomers were modeled by nonlinear incompressible elements, whereas plies were simulated by cord-rubber composite elements. Gap elements were used to simulate the opening between tire and rim at zero inflation pressure. This opening closed when the inflation pressure was increased gradually. The predicted distribution of contact pressure at the tire-rim interface agreed very well with the available experimental measurements. Several variations of the tire-rim interference fit were analyzed.


Author(s):  
Shiwei Wang ◽  
Anton Chavez ◽  
Simil Thomas ◽  
Hong Li ◽  
Nathan C. Flanders ◽  
...  

This work reports on the assembly of imine-linked macrocycles that serve as models of two-dimensional covalent organic frameworks (2D COFs). Interlayer interactions play an important role in the formation of 2D COFs, yet the effect of monomer structure on COF formation, crystallinity, and susceptibility to exfoliation are not well understood. For example, monomers with both electron-rich and electron-poor π-electron systems have been proposed to strengthen interlayer inter-actions and improve crystallinity. Here we probe these effects by studying the stacking behavior of imine-linked macrocycles that represent discrete models of 2D COFs. <div><br></div><div>Specifically, macrocycles based on terephthaldehyde (PDA) or 2,5-dimethoxyterephthaldehyde (DMPDA) stack upon cooling molecularly dissolved solutions. Both macrocycles assemble cooperatively with similar ΔHe values of -97 kJ/mol and -101 kJ/mol, respectively, although the DMPDA macrocycle assembly process showed a more straightforward temperature dependence. Circular dichroism spectroscopy performed on macrocycles bearing chiral side chains revealed a helix reversion process for the PDA macrocycles that was not observed for the DMPDA macrocycles. <br></div><div><br></div><div>Given the structural similarity of these monomers, these findings demonstrate that the stacking processes associated with nanotubes derived from these macrocycles, as well as for the corresponding COFs, are complex and susceptible to kinetic traps, casting doubt on the relevance of thermodynamic arguments for improving materials quality. <br></div>


Sign in / Sign up

Export Citation Format

Share Document