Differentiation Factors

2021 ◽  
pp. 536-536
2020 ◽  
Vol 15 (7) ◽  
pp. 602-606
Author(s):  
Kun Ji ◽  
Ling Ding ◽  
Xi Chen ◽  
Yun Dai ◽  
Fangfang Sun ◽  
...  

Mesenchymal Stem Cells (MSCs) exhibit enormous therapeutic potential because of their indispensable regenerative, reparative, angiogenic, anti-apoptotic, and immunosuppressive properties. MSCs can best differentiate into mesodermal cell lineages, including osteoblasts, adipocytes, muscle cells, endothelial cells and chondrocytes. Specific differentiation of MSCs could be induced through limited conditions. In addition to the relevant differentiation factors, drastic changes also occur in the microenvironment to conduct it in an optimal manner for particular differentiation. Recent evidence suggests that the mitochondria participate in the regulating of direction and process of MSCs differentiation. Therefore, our current review focuses on how mitochondria participate in both osteogenesis and adipogenesis of MSC differentiation. Besides that, in our current review, we try to provide a further understanding of the relationship between the behavior of mitochondria and the direction of MSC differentiation, which could optimize current cellular culturing protocols for further facilitating tissue engineering by adjusting specific conditions of stem cells.


2007 ◽  
Vol 54 (2) ◽  
pp. 255-264 ◽  
Author(s):  
Ryu-ichi KITAMURA ◽  
Takeki OGATA ◽  
Yuji TANAKA ◽  
Kazuo MOTOYOSHI ◽  
Masaharu SENO ◽  
...  

1994 ◽  
Vol 14 (2) ◽  
pp. 1364-1373 ◽  
Author(s):  
A Eilers ◽  
M Baccarini ◽  
F Horn ◽  
R A Hipskind ◽  
C Schindler ◽  
...  

Rapid transcriptional induction of genes in response to gamma interferon (IFN-gamma) is mediated by the IFN-gamma activation site (GAS) and its cognate protein, the IFN-gamma activation factor (GAF). We describe a GAS-associated, differentiation-induced factor (DIF) as a potential molecular link between the activities of IFN-gamma and of growth and differentiation factors. DIF DNA binding was activated by colony-stimulating factor 1 in murine macrophages and also during tetradecanoyl phorbol acetate-induced differentiation or IFN-gamma treatment in myeloid U937 cells. IFN-gamma activation of DIF decreased significantly upon monocytic differentiation. DIF binding to DNA was inhibited by antiphosphotyrosine antibodies and could be induced by treatment of U937 cells with vanadate. Unlike GAF, DIF-DNA complexes did not contain the 91-kDa protein (p91) from ISGF-3. DIF bound with high affinity to GAS from the promoters of the IFP 53/tryptophanyl-tRNA synthetase and Fc gamma RI genes, intermediate affinity to the Ly6A/E GAS, and low affinity to the guanylate-binding protein GAS. DIF may belong to a family of cytokine- or growth factor-induced factors binding with variable affinities to GAS-related elements: the interleukin-6-responsive acute-phase response factor associated with GAS from different IFN-inducible promoters but with a different preference of binding compared with DIF. The sis-inducible element of the c-fos promoter bound GAF but not DIF. However, the sis-inducible element could be changed by point mutation to compete for GAF and DIF binding. Our data show DIF to be a novel DNA-binding protein which is activated in response to differentiating signals. Moreover, they suggest that a family of cytokine- or growth factor-regulated proteins integrates and coordinates the responses to cytokines and to growth and differentiation factors by binding to GAS-related elements.


2021 ◽  
Author(s):  
David Kilian ◽  
Silvia Cometta ◽  
Anne Bernhardt ◽  
Rania Taymour ◽  
Jonas Golde ◽  
...  

Abstract One of the key challenges in osteochondral tissue engineering is to define specified zones with varying material properties, cell types and biochemical factors supporting locally adjusted differentiation into the osteogenic and chondrogenic lineage, respectively. Herein, extrusion-based core-shell bioprinting is introduced as a potent tool allowing a spatially defined delivery of cell types and differentiation factors TGF-β3 and BMP-2 in separated compartments of hydrogel strands, and, therefore, a local supply of matching factors for chondrocytes and osteoblasts. Ink development was based on blends of alginate and methylcellulose, in combination with varying concentrations of the nanoclay Laponite whose high affinity binding capacity for various molecules was exploited. Release kinetics of model molecules was successfully tuned by Laponite addition. Core-shell bioprinting was proven to generate well-oriented compartments within one strand as monitored by optical coherence tomography in a non-invasive manner. Chondrocytes and osteoblasts were applied each in the shell while the respective differentiation factors (TGF-β3, BMP-2) were provided by a Laponite-supported core serving as central factor depot within the strand, allowing directed differentiation of cells in close contact to the core. Experiments with bi-zonal constructs, comprising an osteogenic and a chondrogenic zone, revealed that the local delivery of the factors from the core reduces effects of these factors on the cells in the other scaffold zone. These observations prove the general suitability of the suggested system for co-differentiation of different cell types within a zonal construct.


1994 ◽  
Vol 14 (3) ◽  
pp. 1909-1919
Author(s):  
D Wen ◽  
S V Suggs ◽  
D Karunagaran ◽  
N Liu ◽  
R L Cupples ◽  
...  

We used molecular cloning and functional analyses to extend the family of Neu differentiation factors (NDFs) and to explore the biochemical activity of different NDF isoforms. Exhaustive cloning revealed the existence of six distinct fibroblastic pro-NDFs, whose basic transmembrane structure includes an immunoglobulin-like motif and an epidermal growth factor (EGF)-like domain. Structural variation is confined to three domains: the C-terminal portion of the EGF-like domain (isoforms alpha and beta), the adjacent juxtamembrane stretch (isoforms 1 to 4), and the variable-length cytoplasmic domain (isoforms a, b, and c). Only certain combinations of the variable domains exist, and they display partial tissue specificity in their expression: pro-NDF-alpha 2 is the predominant form in mesenchymal cells, whereas pro-NDF-beta 1 is the major neuronal isoform. Only the transmembrane isoforms were glycosylated and secreted as biologically active 44-kDa glycoproteins, implying that the transmembrane domain functions as an internal signal peptide. Extensive glycosylation precedes proteolytic cleavage of pro-NDF but has no effect on receptor binding. By contrast, the EGF-like domain fully retains receptor binding activity when expressed separately, but its beta-type C terminus displays higher affinity than alpha-type NDFs. Likewise, structural heterogeneity of the cytoplasmic tails may determine isoform-specific rate of pro-NDF processing. Taken together, these results suggest that different NDF isoforms are generated by alternative splicing and perform distinct tissue-specific functions.


Sign in / Sign up

Export Citation Format

Share Document