2020 ◽  
Vol 2 (2) ◽  
Author(s):  
Musdar Musdar ◽  
Lukmanul Hakim ◽  
Juliani Juliani ◽  
Jailani Jailani

White sweet potato starch (Ipomea batatas L.) and avocado seed starch (Parsea americana Mill) derived from local plants have the potential to be developed as agricultural products. Starch is a hydrocolloid compound as a potential local resource to be utilized. Glycerol function as an anti-freezing which is hygroscopic. This study aims to determine the ratio of white sweet potato starch with avocado seed starch and the concentration of glycerol for making edible film. This study was an experiment using a completely randimized factorial design with 2 (two) main factor consisting of a comparison of white sweet potato starch and avocado seed with 3 levels: P1 = 35%:65%., P2=50%:50%., P3=65%:35% and glycerol concentration with 3 levels: G1=1%., G2=2%., G3=3%. The best result reasearch were content of 23.03% (tratment P1G1), solubility of 55.57% (treatment P3G2)., swelling test of 9.83% (treatment P2g3)., elongation of 8.18% (treatment P3G2)


1959 ◽  
Vol 51 (12) ◽  
pp. 750-751 ◽  
Author(s):  
H. W. Gausman ◽  
G. R. Cooper ◽  
R. A. Struchtemeyer

Weed Science ◽  
1970 ◽  
Vol 18 (5) ◽  
pp. 636-642 ◽  
Author(s):  
D. E. Moreland ◽  
W. J. Blackmon ◽  
H. G. Todd ◽  
F. S. Farmer

Effects of three diphenylether herbicides [2,4-dichlorophenyl-p-nitrophenyl ether (nitrofen); 2,4,6-trichlorophenyl-4′-nitrophenyl ether (hereinafter referred to as MC-1478); and 2,4′-dinitro-4-trifluoromethyl-diphenylether (hereinafter referred to as C-6989)] were measured on phosphorylation and electron transport in spinach(Spinacia oleraceaL.) chloroplasts, and mung bean(Phaseolus aureusL., var. Jumbo) and white potato tuber(Solarium tuberosumL.) mitochondria. All of the diphenylethers acted primarily as inhibitors of chloroplast noncyclic electron transport, and the coupled photophosphorylation. The compounds ranked in the following decreasing order of inhibitory effectiveness: MC-1478 ≥ C-6989 >> nitrofen. A site of action close to light reaction II was suggested. At high molar concentrations, marginal interference with cyclic electron transport or phosphorylation was obtained. In mitochondria, MC-1478 and nitrofen acted primarily as electron transport inhibitors with malate, NADH, and succinate as substrates. MC-1478 was a slightly stronger inhibitor than nitrofen. Only slight stimulation of ADP-limited oxygen uptake was obtained during the oxidation of NADH and succinate; whereas, strong inhibition of oxygen uptake was obtained with malate. C-6989 also weakly stimulated ADP-limited oxygen uptake with NADH and succinate but differed from the two chlorinated diphenylethers in that electron transport was not inhibited when ADP was present in excess. Interference with ATP generation could be one of the mechanisms through which the phytotoxicity of diphenylether herbicides is expressed.


2021 ◽  
Vol 19 (1) ◽  
pp. 63-73
Author(s):  
Aimable Nsabimana ◽  
Fidele Niyitanga ◽  
Dave D. Weatherspoon ◽  
Anwar Naseem

Abstract Rwanda’s “Crop Intensification Program (CIP)” is primarily a land consolidation program aimed at improving agricultural productivity and food security. The program, which began in 2007, focuses on monocropping and commercialization of six priority crops: maize, wheat, rice, white potato, beans, and cassava. CIP has facilitated easy access to improved seed stocks, fertilizer, extension services, and postharvest handling and storage services. Although studies have documented the impact of CIP on changes in farm yield, incomes, and productivity, less is known about its impact on food prices. In this study, we examine the crop-food price differences in intensive monocropped CIP and non-intensive monocropped CIP zones in Rwanda. Specifically, the study evaluates price variations of beans and maize along with complementary food crops in intensive and non-intensive monocropped zones before and after the introduction of the CIP policy. We find that the CIP policy is not associated with differences in CIP crop prices between the intensive and non-intensive monocropped zones. Over time, prices increased for CIP crops but generally, the crop prices in the two zones were cointegrated. Prices for non-CIP crops in the two different zones did show price differentials prior to the implementation of CIP, with the prices in intensive monocropped zones being greater than in the non-intensive monocropped zones. Moreover, the prices in intensive areas are cointegrated with prices in non-intensive areas for maize and beans and these prices are converging. This indicates that farmers who intensively produced one CIP crop were able to go to the market and purchase other food crops and that price differences between zones have decreased over time, potentially making the CIP intensive farmers better off.


1982 ◽  
Vol 99 (2) ◽  
pp. 325-328 ◽  
Author(s):  
M. F. B. Dale ◽  
M. S. Phillips

SUMMARYThe inheritance of resistance to Globodera pallida was studied in seedling progenies derived from Solanum tuberosum ssp. andigena CPC 2802 (H3) and S. vernei and compared with resistance to G. rostochiensis derived from S. tuberosum ssp. andigena CPC 1673(H1). The resistance of CPC 2802 was originally thought to be due to a major gene (H3), but results presented here demonstrate that it and that derived from S. vernei are inherited in a similar manner quite distinct from the major gene inheritance from CPC 1673 (HI). It is concluded that the resistances derived from CPC 2802 and S. vernei are both polygenic in nature. These findings are discussed in relation to breeding policy and screening methods.


Author(s):  
Conrad K. Enenebeaku ◽  
Nnaemeka J. Okorocha ◽  
Uchechi E. Enenebeaku ◽  
Ikechukwu C. Ukaga

The potential of white potato peel powder for the removal of methyl red (MR) dye from aqueous solution was investigated. The adsorbent was characterized by FTIR and SEM analysis. Batch adsorption studies were conducted and various parameters such as contact time, adsorbent dosage, initial dye concentration, pH and temperature were studied to observe their effects in the dye adsorption process. The optimum conditions for the adsorption of MR onto the adsorbent (WPPP) was found to be contact (80 mins), pH (2) and temperature (303K) for an initial MR dye concentration of 50mg/l and adsorbent dose of 1.0g. The experimental equilibrium adsorption data of the (MR) dye fitted best and well to the Freundlich isotherm model. The maximum adsorption capacity was found to be 30.48mg/g for the adsorption of MR. The kinetic data conforms to the pseudo – second order kinetic model.


Weed Science ◽  
1970 ◽  
Vol 18 (3) ◽  
pp. 419-426 ◽  
Author(s):  
D. E. Moreland ◽  
W. J. Blackmon

The effects of 3,5-dibromo-4-hydroxybenzaldehyde O-(2,4-dinitrophenyl)oxime (hereinafter referred to as C-9122), 3,5-dibromo-4-hydroxybenzonitrile (bromoxynil), 3,5-dibromo-4-hydroxybenzaldoxime (hereinafter referred to as bromoxime), and 2,4-dinitrophenol (hereinafter referred to as DNP) on phosphorylation and electron transport were measured in mitochondria isolated from white potato tubers (Solarium tuberosum L.) and in chloroplasts from spinach leaves (Spinacia oleracea L.). Mitochondrial oxygen utilization was monitored polarographically. All four chemicals stimulated ADP-limited oxygen utilization, inhibited non-ADP-limited oxygen uptake, and relieved oligomycin-inhibited oxygen uptake. C-9122 produced responses at lower molar concentrations than did bromoxynil, bromoxime, and DNP. The I50 value for inhibition of state 3 respiration by C-9122 was 2.7 × 10−6 M.In chloroplasts, C-9122, bromoxime, and DNP inhibited photoreduction and coupled photophosphorylation with water as the electron donor, and with ferricyanide and NADP as electron acceptors. Cyclic photophosphorylation, with phenazine methosulfate as the electron mediator under an argon gas phase, also was inhibited. With ascorbate-2,6-dichlorophenolindophenol (hereinafter referred to as DPIP) as the electron donor, phosphorylation coupled to NADP reduction was inhibited, but not the reduction of NADP. C-9122 was the strongest inhibitor, and bromoxime was the weakest inhibitor of the several reactions. The I50 value for inhibition of the coupled ferricyanide reduction was 4.6 × 10−6 M for C-9122. C-9122 appeared to act in two different ways by (a) inhibiting electron transport at or near photosystem II and the oxygen evolution pathway, and (b) interfering with energy transfer and the generation of ATP. Bromoxynil inhibited photoreduction and photophosphorylation reactions in which water served as the electron donor; but it was a very poor inhibitor of both cyclic photophosphorylation, and photophosphorylation coupled to NADP reduction with ascorbate-DPIP serving as the electron donor. Because of the pivotal role of ATP in cellular metabolism, it is conceivable that interference with ATP generation could be a major (but not necessarily the only) mechanism through which the herbicidal activity of C-9122 is expressed.


Sign in / Sign up

Export Citation Format

Share Document