Numerical Simulation of the Reactive Transport at the Pore Scale

Author(s):  
Vadim Lisitsa ◽  
Tatyana Khachkova
2021 ◽  
pp. 375-387
Author(s):  
Vadim Lisitsa ◽  
Tatyana Khachkova ◽  
Dmitry Prokhorov ◽  
Yaroslav Bazaikin ◽  
Yongfei Yang

2021 ◽  
pp. 130917
Author(s):  
Xiangqian Wei ◽  
Wenzhi Li ◽  
Qiying Liu ◽  
Weitao Sun ◽  
Siwei Liu ◽  
...  

SPE Journal ◽  
2016 ◽  
Vol 21 (01) ◽  
pp. 280-292 ◽  
Author(s):  
John Lyons ◽  
Hadi Nasrabadi ◽  
Hisham A. Nasr-El-Din

Summary Fracture acidizing is a well-stimulation technique used to improve the productivity of low-permeability reservoirs and to bypass deep formation damage. The reaction of injected acid with the rock matrix forms etched channels through which oil and gas can then flow upon production. The properties of these etched channels depend on the acid-injection rate, temperature, reaction chemistry, mass-transport properties, and formation mineralogy. As the acid enters the formation, it increases in temperature by heat exchange with the formation and the heat generated by acid reaction with the rock. Thus, the reaction rate, viscosity, and mass transfer of acid inside the fracture also increase. In this study, a new thermal-fracture-acidizing model is presented that uses the lattice Boltzmann method to simulate reactive transport. This method incorporates both accurate hydrodynamics and reaction kinetics at the solid/liquid interface. The temperature update is performed by use of a finite-difference technique. Furthermore, heterogeneity in rock properties (e.g., porosity, permeability, and reaction rate) is included. The result is a model that can accurately simulate realistic fracture geometries and rock properties at the pore scale and that can predict the geometry of the fracture after acidizing. Three thermal-fracture-acidizing simulations are presented here, involving injection of 15 and 28 wt% of hydrochloric acid into a calcite fracture. The results clearly show an increase in the overall fracture dissolution because of the addition of temperature effects (increasing the acid-reaction and mass-transfer rates). It has also been found that by introducing mineral heterogeneity, preferential dissolution leads to the creation of uneven etching across the fracture surfaces, indicating channel formation.


2012 ◽  
Vol 94 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Toshio Sugita ◽  
Toru Sato ◽  
Shinichiro Hirabayashi ◽  
Jiro Nagao ◽  
Yusuke Jin ◽  
...  

Author(s):  
Mosayeb Shams ◽  
Kamaljit Singh ◽  
Branko Bijeljic ◽  
Martin J. Blunt

AbstractThis study focuses on direct numerical simulation of imbibition, displacement of the non-wetting phase by the wetting phase, through water-wet carbonate rocks. We simulate multiphase flow in a limestone and compare our results with high-resolution synchrotron X-ray images of displacement previously published in the literature by Singh et al. (Sci Rep 7:5192, 2017). We use the results to interpret the observed displacement events that cannot be described using conventional metrics such as pore-to-throat aspect ratio. We show that the complex geometry of porous media can dictate a curvature balance that prevents snap-off from happening in spite of favourable large aspect ratios. We also show that pinned fluid-fluid-solid contact lines can lead to snap-off of small ganglia on pore walls; we propose that this pinning is caused by sub-resolution roughness on scales of less than a micron. Our numerical results show that even in water-wet porous media, we need to allow pinned contacts in place to reproduce experimental results.


Geophysics ◽  
2021 ◽  
pp. 1-69
Author(s):  
Artur Posenato Garcia ◽  
Zoya Heidari

The dielectric response of rocks results from electric double layer (EDL), Maxwell-Wagner (MW), and dipolar polarizations. The EDL polarization is a function of solid-fluid interfaces, pore water, and pore geometry. MW and dipolar polarizations are functions of charge accumulation at the interface between materials with contrasting impedances and the volumetric concentration of its constituents, respectively. However, conventional interpretation of dielectric measurements only accounts for volumetric concentrations of rock components and their permittivities, not interfacial properties such as wettability. Numerical simulations of dielectric response of rocks provides an ideal framework to quantify the impact of wettability and water saturation ( Sw) on electric polarization mechanisms. Therefore, in this paper we introduce a numerical simulation method to compute pore-scale dielectric dispersion effects in the interval from 100 Hz to 1 GHz including impacts of pore structure, Sw, and wettability on permittivity measurements. We solve the quasi-electrostatic Maxwell's equations in three-dimensional (3D) pore-scale rock images in the frequency domain using the finite volume method. Then, we verify simulation results for a spherical material by comparing with the corresponding analytical solution. Additionally, we introduce a technique to incorporate α-polarization to the simulation and we verify it by comparing pore-scale simulation results to experimental measurements on a Berea sandstone sample. Finally, we quantify the impact of Sw and wettability on broadband dielectric permittivity measurements through pore-scale numerical simulations. The numerical simulation results show that mixed-wet rocks are more sensitive than water-wet rocks to changes in Sw at sub-MHz frequencies. Furthermore, permittivity and conductivity of mixed-wet rocks have weaker and stronger dispersive behaviors, respectively, when compared to water-wet rocks. Finally, numerical simulations indicate that conductivity of mixed-wet rocks can vary by three orders of magnitude from 100 Hz to 1 GHz. Therefore, Archie’s equation calibrated at the wrong frequency could lead to water saturation errors of 73%.


2019 ◽  
Vol 147 ◽  
pp. 464-472 ◽  
Author(s):  
Gang Wang ◽  
Gaosheng Wei ◽  
Chao Xu ◽  
Xing Ju ◽  
Yanping Yang ◽  
...  

2022 ◽  
Vol 3 ◽  
Author(s):  
Vitalii Starchenko

A fundamental understanding of mineral precipitation kinetics relies largely on microscopic observations of the dynamics of mineral surfaces exposed to supersaturated solutions. Deconvolution of tightly bound transport, surface reaction, and crystal nucleation phenomena still remains one of the main challenges. Particularly, the influence of these processes on texture and morphology of mineral precipitate remains unclear. This study presents a coupling of pore-scale reactive transport modeling with the Arbitrary Lagrangian-Eulerian approach for tracking evolution of explicit solid interface during mineral precipitation. It incorporates a heterogeneous nucleation mechanism according to Classical Nucleation Theory which can be turned “on” or “off.” This approach allows us to demonstrate the role of nucleation on precipitate texture with a focus at micrometer scale. In this work precipitate formation is modeled on a 10 micrometer radius particle in reactive flow. The evolution of explicit interface accounts for the surface curvature which is crucial at this scale in the regime of emerging instabilities. The results illustrate how the surface reaction and reactive fluid flow affect the shape of precipitate on a solid particle. It is shown that nucleation promotes the formation of irregularly shaped precipitate and diminishes the effect of the flow on the asymmetry of precipitation around the particle. The observed differences in precipitate structure are expected to be an important benchmark for reaction-driven precipitation in natural environments.


Sign in / Sign up

Export Citation Format

Share Document