scholarly journals Correction to: Blast Disease of Cereal Crops: Evolution and Adaptation in Context of Climate Change

Author(s):  
S. Chandra Nayaka ◽  
Rajashekara Hosahatti ◽  
Ganesan Prakash ◽  
C. Tara Satyavathi ◽  
Rajan Sharma
Life ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 502
Author(s):  
Tinashe Zenda ◽  
Songtao Liu ◽  
Anyi Dong ◽  
Huijun Duan

Adapting to climate change, providing sufficient human food and nutritional needs, and securing sufficient energy supplies will call for a radical transformation from the current conventional adaptation approaches to more broad-based and transformative alternatives. This entails diversifying the agricultural system and boosting productivity of major cereal crops through development of climate-resilient cultivars that can sustainably maintain higher yields under climate change conditions, expanding our focus to crop wild relatives, and better exploitation of underutilized crop species. This is facilitated by the recent developments in plant genomics, such as advances in genome sequencing, assembly, and annotation, as well as gene editing technologies, which have increased the availability of high-quality reference genomes for various model and non-model plant species. This has necessitated genomics-assisted breeding of crops, including underutilized species, consequently broadening genetic variation of the available germplasm; improving the discovery of novel alleles controlling important agronomic traits; and enhancing creation of new crop cultivars with improved tolerance to biotic and abiotic stresses and superior nutritive quality. Here, therefore, we summarize these recent developments in plant genomics and their application, with particular reference to cereal crops (including underutilized species). Particularly, we discuss genome sequencing approaches, quantitative trait loci (QTL) mapping and genome-wide association (GWAS) studies, directed mutagenesis, plant non-coding RNAs, precise gene editing technologies such as CRISPR-Cas9, and complementation of crop genotyping by crop phenotyping. We then conclude by providing an outlook that, as we step into the future, high-throughput phenotyping, pan-genomics, transposable elements analysis, and machine learning hold much promise for crop improvements related to climate resilience and nutritional superiority.


2018 ◽  
Vol 13 (5) ◽  
pp. 220-227 ◽  
Author(s):  
Soledad Moreno Gutiérrez Silvia ◽  
Toriz Palacios Alfredo ◽  
A. Ruiz-Vanoye Jorge ◽  
López Pérez Sócrates

Earth ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 45-71
Author(s):  
Dhurba Neupane ◽  
Pramila Adhikari ◽  
Dwarika Bhattarai ◽  
Birendra Rana ◽  
Zeeshan Ahmed ◽  
...  

Climate prediction models suggest that agricultural productivity will be significantly affected in the future. The expected rise in average global temperature due to the higher release of greenhouse gases (GHGs) into the atmosphere and increased depletion of water resources with enhanced climate variability will be a serious threat to world food security. Moreover, there is an increase in the frequency and severity of long-lasting drought events over 1/3rd of the global landmass and five times increase in water demand deficits during the 21st century. The top three cereals, wheat (Triticum aestivum), maize (Zea mays), and rice (Oryza sativa), are the major and staple food crops of most people across the world. To meet the food demand of the ever-increasing population, which is expected to increase by over 9 billion by 2050, there is a dire need to increase cereal production by approximately 70%. However, we have observed a dramatic decrease in area of fertile and arable land to grow these crops. This trend is likely to increase in the future. Therefore, this review article provides an extensive review on recent and future projected area and production, the growth requirements and greenhouse gas emissions and global warming potential of the top three cereal crops, the effects of climate change on their yields, and the morphological, physiological, biochemical, and hormonal responses of plants to drought. We also discuss the potential strategies to tackle the effects of climate change and increase yields. These strategies include integrated conventional and modern molecular techniques and genomic approach, the implementation of agronomic best management (ABM) practices, and growing climate resilient cereal crops, such as millets. Millets are less resource-intensive crops and release a lower amount of greenhouse gases compared to other cereals. Therefore, millets can be the potential next-generation crops for research to explore the climate-resilient traits and use the information for the improvement of major cereals.


Author(s):  
B. N. Devanna ◽  
H. Rajashekara ◽  
S. Raghu ◽  
P. K. Singh ◽  
P. Jain ◽  
...  

Plant Disease ◽  
2020 ◽  
Vol 104 (7) ◽  
pp. 1932-1938
Author(s):  
Dagang Tian ◽  
Yan Lin ◽  
Ziqiang Chen ◽  
Zaijie Chen ◽  
Fang Yang ◽  
...  

Rice blast disease caused by the fungus Magnaporthe oryzae damages cereal crops and poses a high risk to rice production around the world. Currently, planting cultivars with resistance (R) genes is still the most environment-friendly approach to control this disease. Effective identification of R genes existing in diverse rice cultivars is important for understanding the distribution of R genes and predicting their contribution to resistance against blast isolates in regional breeding. Here, we developed a new insertion/deletion (InDel) marker, Pigm/2/9InDel, that can differentiate the cloned R genes (Pigm, Pi9, and Pi2/Piz-t) at the Pi2/9 locus. Pigm/2/9InDel combined with the marker Pi2-LRR for Pi2 was applied to determine the distribution of these four R genes among 905 rice varieties, most of which were collected from the major rice-producing regions in China. In brief, nine Pigm-containing varieties from Fujian and Guangdong provinces were identified. All of the 62 Pi2-containing varieties were collected from Guangdong, and 60 varieties containing Piz-t were from seven provinces. However, Pi9 was not found in any of the Chinese varieties. The newly identified varieties carrying the Pi2/9 alleles were further subjected to inoculation tests with regional blast isolates and field trials. Our results indicate that Pigm and Pi2 alleles have been introgressed for blast resistance breeding mainly in the Fujian and Guangdong region, and Pi9 is a valuable blast resistance resource to be introduced into China.


2013 ◽  
Vol 119 (3-4) ◽  
pp. 855-873 ◽  
Author(s):  
Paul Evangelista ◽  
Nicholas Young ◽  
Jonathan Burnett

2019 ◽  
Author(s):  
Yanjun Kou ◽  
Yunlong He ◽  
Jiehua Qiu ◽  
Shu Yazhou ◽  
Fan Yang ◽  
...  

SUMMARYMagnaporthe oryzaecauses Blast disease, which is one of the most devastating infections in rice and several important cereal crops.M. oryzaeneeds to coordinate gene regulation, morphological changes, nutrient acquisition, and host evasion, in order to invade and proliferate within the plant tissues. Thus far, the molecular mechanisms underlying the regulation of invasive growthin plantahave remained largely unknown. We identified a precise filamentous-punctate-filamentous cycle in mitochondrial morphology duringMagnaporthe-Rice interaction. Interestingly, loss of either the mitochondrial fusion (MoFzo1) or fission (MoDnm1) machinery, or inhibition of mitochondrial fission using Mdivi-1 caused significant reduction inM. oryzaepathogenicity. Furthermore, exogenous carbon source(s) but not antioxidant treatment delayed such mitochondrial dynamics/transition during invasive growth. Such nutrient-based regulation of organellar dynamics preceded MoAtg24-mediated mitophagy, which was found to be essential for proper biotrophic development and invasive growthin planta. We propose that precise mitochondrial dynamics and mitophagy occur during the transition from biotrophy to necrotrophy, and are required for proper induction and establishment of the blast disease in rice.


Sign in / Sign up

Export Citation Format

Share Document