Future Scenarios of Water Security: A Case of Bogotá River Basin, Colombia

Author(s):  
Andres Chavarro ◽  
Monica Castaneda ◽  
Sebastian Zapata ◽  
Isaac Dyner
2021 ◽  
Author(s):  
Dinesh Kumar ◽  
Chandrika Thulaseedharan Dhanya ◽  
Ashvani Gosain

<p>Ensuring water security considering the near- and far-future climatic and socio-economic uncertainties, is one of the grand global challenges. In developing countries, supply-side management like the construction of new dams, rehabilitation and augmentation of the existing water resources and supply infrastructure are the widely adopted solutions. Often, the importance of the requirement of water for environmental well-being is neglected. Here, we develop a modelling framework using Water Evaluation and Planning and Qual2K models, considering ‘environment’ also as a stakeholder. This water decision support system is demonstrated on the Upper Yamuna River Basin, a complex and polluted river system in India. Further, to raise risk awareness among stakeholders about the extreme plausible future conditions, the storyline-based approach is adopted to develop future scenarios. The developed framework is deployed to explore the National Capital Territory of Delhi's urban water security for different plausible future scenarios. Based on this, reliability of different policy management options and strategies are explored. The simulated results show that the localized (urban level) management strategies are more reliable than the basin level management strategies, especially under a prolonged plausible warmer climate and better standard of living based socio-economic development conditions. The model building, scenario development, and analysis demonstrate the importance of incorporating the local system knowledge to build an effective decision support system for physically and legally complex river basins.</p>


2021 ◽  
Author(s):  
Graham Jewitt ◽  
Catherine Sutherland ◽  
Sabine Stuart-Hill ◽  
Jim Taylor ◽  
Susan Risko ◽  
...  

<p>The uMngeni River Basin supports over six million people, providing water to South Africa’s third largest regional economy. A critical question facing stakeholders is how to sustain and enhance water security in the catchment for its inhabitants. The role of Ecological Infrastructure (EI) (the South African term for a suite of Nature Based Solutions and Green Infrastructure projects) in enhancing and sustaining water and sanitation delivery in the catchment has been the focus of a project that has explored the conceptual and philosophical basis for investing in EI over the past five years.</p><p>The overall aim of this project was to identify where and how investment into the protection and/or restoration of EI can be made to produce long-term and sustainable returns in terms of water security assurance. In short, the project aimed to guide catchment managers when deciding “what to do” in the catchment to secure a more sustainable water supply, and where it should be done. This seemingly simple question encompasses complexity in time and space, and reveals the connections between different biophysical, social, political, economic and governance systems in the catchment.</p><p>Through the study, we highlight that there is an interdependent and co-constitutive relationship between EI, society, and water security. In particular, by working in spaces where EI investment is taking place, it is evident that socio-economic, environmental and political relations in the catchment play a critical role in making EI investment possible, or not possible.</p><p>The study inherently addresses aspects of water quantity and quality, economics, societal interactions, and the governance of natural resources. It highlights that ensuring the availability and sustainable management of water resources requires both transdisciplinary and detailed biophysical, economic, social and development studies of both formal and informal socio-ecological systems, and that investing in human resources capacity to support these studies, is critical. In contrast to many projects which have identified this complexity, here, we move beyond identification and actively explore and explain these interactions and have synthesised these into ten lessons based on these experiences and analyses.</p><ul><li>1 - People (human capital), the societies in which they live (societal capital), the constructed environment (built capital), and natural capital interact with, and shape each other</li> <li>2 - Investing in Ecological Infrastructure enhances catchment water security</li> <li>3 - Investing in Ecological Infrastructure or BuiIt/Grey infrastructure is not a binary choice</li> <li>4 - Investing in Ecological Infrastructure is financially beneficial</li> <li>5 - Understanding history, legacy and path dependencies is critical to shift thinking</li> <li>6 - Understanding the governance system is fundamental</li> <li>7 - Meaningful participatory processes are the key to transformation</li> <li>8 - To be sustainable, investments in infrastructure need a concomitant investment in social and human capital</li> <li>9 - Social learning, building transdisciplinarity and transformation takes time and effort</li> <li>10 - Students provide new insights, bring energy and are multipliers</li> </ul>


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 231 ◽  
Author(s):  
Mawulolo Yomo ◽  
Khaldoon A. Mourad ◽  
Masamaeya D. T. Gnazou

Water shortages across the globe have increased due to climate change among other factors with negative impacts expected at the river basin level. Anticipating these impacts will help experts act in a timely manner to avoid a future water crisis. As part of addressing the future water shortage impacts on the Togolese community, this paper assessed water security in the context of the global environmental change in the Oti River Basin taking Oti Nord sub-basin (ONSB) as a case study. Key informants’ interviews were done with staff from governmental institutions, Non-Governmental Organizations (NGOs), community-based organizations, and private operators. The Improved Fuzzy Comprehensive Evaluation Model (IFCEM) was used for assessing water security (WS). A basin level WS evaluation system including five subcomponents (external environment security, water resources security, water-society security, water economic security, and water-environment security) and 23 indicators related to climate, socio-economy, water availability, and consumption were constructed. The results showed that the water level is very insecure in the sub-basin for the assessed years (2010, 2015, and 2025) with the year 2025 being the worst (expected a decrease of water security by 20% and 1% in 2025 compared to the years 2015 and 2010, respectively). This insecurity is found to be the result of many factors including technical, institutional, juridical, environmental, socio-cultural, hydrogeological, and demographical factors. However, managerial factors such as institutional instability, the inadequacies in water and related sector evolution, and the absence of de-centralized water management structures, the non-operationalization of management organs/financial instruments, and culture (i.e. taboos and bylaws) are found to be key to the study area. The paper concluded that the operationalization of management organs/financial instruments may enable the application of adopted water policies and regulations, which may lead to a sound and coordinated management of the available water resources since this will enable the government’s self-investment in clean water provision, data acquisition (potential water available and the estimation of economic driven potential water needs, which are key for any sound development), and a stimulated joined effort from the existing institutions. In addition, the establishment of a sound waste management system and awareness raising, and educative activities regarding water pollution will be of great benefit for this cause.


2014 ◽  
Vol 18 (4) ◽  
pp. 1413-1422 ◽  
Author(s):  
P. Gober ◽  
H. S. Wheater

Abstract. While there is a popular perception that Canada is a water-rich country, the Saskatchewan River basin (SRB) in Western Canada exemplifies the multiple threats to water security seen worldwide. It is Canada's major food-producing region and home to globally significant natural resource development. The SRB faces current water challenges stemming from (1) a series of extreme events, including major flood and drought events since the turn of the 21st century, (2) full allocation of existing water resources in parts of the basin, (3) rapid population growth and economic development, (4) increasing pollution, and (5) fragmented and overlapping governance that includes the provinces of Alberta, Saskatchewan, and Manitoba, various Federal and First Nations responsibilities, and international boundaries. The interplay of these factors has increased competition for water across economic sectors and among provinces, between upstream and downstream users, between environmental flows and human needs, and among people who hold different values about the meaning, ownership, and use of water. These current challenges are set in a context of significant environmental and societal change, including widespread land modification, rapid urbanization, resource exploitation, climate warming, and deep uncertainties about future water supplies. We use Sivapalan et al.'s (2012) framework of socio-hydrology to argue that the SRB's water security challenges are symptoms of dynamic and complex water systems approaching critical thresholds and tipping points. To Sivapalan et al.'s (2012) emphasis on water cycle dynamics, we add the need for governance mechanisms to manage emergent systems and translational science to link science and policy to the socio-hydrology agenda.


2020 ◽  
Author(s):  
Gabriela Gesualdo ◽  
Felipe Souza ◽  
Eduardo Mendiondo

<p>Extreme weather events are increasingly evident and widespread around the world due to climate change. These events are driven by rising temperatures and changes in precipitation patterns, which lead to changes in flood frequency, drought and water availability. To reduce the future impacts of natural disasters, it is crucial to understand the spatiotemporal variability of social, economic and environmental vulnerabilities related to natural disasters. Particularly, developing countries are more vulnerable to climate risks due to their greater economic dependence on climate-sensitive primary activities, infrastructure, finance and other factors that undermine successful adaptation. In this concept, adaptation plays the role of anticipating the adverse effects of climate change and taking appropriate measures to prevent or minimize the damage they may cause. Thus, the insurance fund is a valuable adaptation tool for unexpected losses reimbursement, long-term impacts prevention and encouraging risk mitigation. Although this approach is successful throughout the world and major organizations support insurance as an adaptation measure, the Brazilian insurance fund only provides support for rural landowners. Thus, we will evaluate the implementation of an indexed multi-risk insurance fund integrated with water security parameters, as an instrument for adaptation to climate change. We will use the SWAT+, a hydrosedimentological model, to assess the current conditions and future scenarios (up to 2100) of water security indices considering two International Panel on Climate Change (IPCC) Representative Concentration Pathways (RCP 4.5 and RCP 8.5). Then, we will incorporate those parameters to the Hydrological Risk Transfer Model (MTRH). Our results will provide optimized premium in current and future scenarios for supporting adaptation plans to climate change. Furthermore, to contribute to technical-scientific information addressing possible effects of climate change on the hydrometeorological variables and their spatiotemporal variability.</p>


Author(s):  
Djan'na H. Koubodana ◽  
Moustapha Tall ◽  
Ernest Amoussou ◽  
Muhammad Mumtaz ◽  
Julien Adounkpe ◽  
...  

This paper performs non-parametric Mann Kendall (MK) trend analysis of historical hydroclimatic data (1961-2016), an ensemble climate model validation and a computation of 16 Expert Team on Climate Change Detection and Indices (ETCCDI) temperature and rainfall extremes indices. The climate indices are evaluated using MK test and annual trend analysis for two Representative Concentration Pathways (RCP4.5 & RCP8.5) future scenarios from 2020 to 2045 over Mono River Basin (MRB) in Togo. The annual and seasonal trend analyses are assessed on historical potential evapotranspiration, mean temperature, rainfall and discharge data. Results show positive and negative trends of hydroclimatic data over MRB from1961 to 2016. Mean temperatures increase significantly in most of the stations while a negative non-significant trend is noticed for rainfall. Meanwhile, the discharge presents a significant seasonal and annual trend for three gauge stations (Corrokope, Nangbéto and Athiémé). Validation of the ensemble climate models reveals that the model under-estimates observations at Sokode, Atkakpamé and Tabligbo stations, however linear regression and spatial correlation coefficients are higher than 0.6. Moreover, the percentage of bias between climate model and observations are less than 15% at most of the stations. Finally, the computation of extreme climatic indices under RCP4.5 and RCP8.5 scenarios shows a significant annual trend of some extreme climatic indices of rainfall and temperature at selected stations between 2020 and 2045 in the MRB. Therefore, relevant governmental politics are needed to elaborate strategies and measures to cope with projected climate changes impacts in the country.


Sign in / Sign up

Export Citation Format

Share Document