scholarly journals Trend Analysis of Hydroclimatic Historical Data and Future Scenarios of Climate Extreme Indices over Mono River Basin in West Africa

Author(s):  
Djan'na H. Koubodana ◽  
Moustapha Tall ◽  
Ernest Amoussou ◽  
Muhammad Mumtaz ◽  
Julien Adounkpe ◽  
...  

This paper performs non-parametric Mann Kendall (MK) trend analysis of historical hydroclimatic data (1961-2016), an ensemble climate model validation and a computation of 16 Expert Team on Climate Change Detection and Indices (ETCCDI) temperature and rainfall extremes indices. The climate indices are evaluated using MK test and annual trend analysis for two Representative Concentration Pathways (RCP4.5 & RCP8.5) future scenarios from 2020 to 2045 over Mono River Basin (MRB) in Togo. The annual and seasonal trend analyses are assessed on historical potential evapotranspiration, mean temperature, rainfall and discharge data. Results show positive and negative trends of hydroclimatic data over MRB from1961 to 2016. Mean temperatures increase significantly in most of the stations while a negative non-significant trend is noticed for rainfall. Meanwhile, the discharge presents a significant seasonal and annual trend for three gauge stations (Corrokope, Nangbéto and Athiémé). Validation of the ensemble climate models reveals that the model under-estimates observations at Sokode, Atkakpamé and Tabligbo stations, however linear regression and spatial correlation coefficients are higher than 0.6. Moreover, the percentage of bias between climate model and observations are less than 15% at most of the stations. Finally, the computation of extreme climatic indices under RCP4.5 and RCP8.5 scenarios shows a significant annual trend of some extreme climatic indices of rainfall and temperature at selected stations between 2020 and 2045 in the MRB. Therefore, relevant governmental politics are needed to elaborate strategies and measures to cope with projected climate changes impacts in the country.

Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3171
Author(s):  
Micah Lourdes Felix ◽  
Young-kyu Kim ◽  
Mikyoung Choi ◽  
Joo-Cheol Kim ◽  
Xuan Khanh Do ◽  
...  

To investigate the recent effects of climate change in the upper Geum River basin in South Korea, a detailed trend analysis of 17 extreme climate indices based on 33 years (1988–2020) of daily precipitation, and daily (minimum and maximum) temperature data has been analyzed in this study. Out of the 17 extreme climate indices, nine (eight) indices were based on temperature (precipitation) data. Trend analysis based on detailed temporal scales (annual, seasonal, monthly) were performed through the Mann–Kendall trend test and the Theil–Sen slope method. Furthermore, the Mann–Whitney–Pettit test was also applied in this study, to detect abrupt changes in the extreme climate indices. Based on the results of this study, the climate conditions at the upper Geum River basin for the past three decades can be summarized as follows: general increase in temperature intensity, decrease in cold duration, increased heat duration, increased precipitation intensity, and increased consecutive wet and dry durations. Furthermore, a prolonged summer season (shorter spring, and autumn periods) and precipitation shifts, were detected based on trend analysis results of seasonal, and monthly time scales. The results presented in this study can provide supplementary data for improving watershed management strategies in the upper Geum River basin.


Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1554 ◽  
Author(s):  
Mohammed Gedefaw ◽  
Hao Wang ◽  
Denghua Yan ◽  
Xinshan Song ◽  
Dengming Yan ◽  
...  

The Awash river basin has been the most extensively developed and used river basin in Ethiopia since modern agriculture was introduced. This paper investigated the annual precipitation, temperature, and river discharge variability using the innovative trend analysis method (ITAM), Mann–Kendall (MK) test, and Sen’s slope estimator test. The results showed that the trend of annual precipitation was significantly increasing in Fitche (Z = 0.82) and Gewane (Z = 0.80), whereas the trend in Bui (Z = 69) was slightly decreasing and the trend in Sekoru (Z = 0.45) was sharply decreasing. As far as temperature trends were concerned, a statistically significant increasing trend was observed in Fitche (Z = 3.77), Bui (Z = 4.84), and Gewane (Z = 5.59). However, the trend in Sekoru (Z = 1.37) was decreasing with statistical significance. The discharge in the study basin showed a decreasing trend during the study period. Generally, the increasing and decreasing levels of precipitation, temperature, and discharge across the stations in this study indicate the change in trends. The results of this study could help researchers, policymakers, and water resources managers to understand the variability of precipitation, temperature, and river discharge over the study basin.


Atmosphere ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 208 ◽  
Author(s):  
Nazzareno Diodato ◽  
Naziano Filizola ◽  
Pasquale Borrelli ◽  
Panos Panagos ◽  
Gianni Bellocchi

The occurrence of hydrological extremes in the Amazon region and the associated sediment loss during rainfall events are key features in the global climate system. Climate extremes alter the sediment and carbon balance but the ecological consequences of such changes are poorly understood in this region. With the aim of examining the interactions between precipitation and landscape-scale controls of sediment export from the Amazon basin, we developed a parsimonious hydro-climatological model on a multi-year series (1997–2014) of sediment discharge data taken at the outlet of Óbidos (Brazil) watershed (the narrowest and swiftest part of the Amazon River). The calibrated model (correlation coefficient equal to 0.84) captured the sediment load variability of an independent dataset from a different watershed (the Magdalena River basin), and performed better than three alternative approaches. Our model captured the interdecadal variability and the long-term patterns of sediment export. In our reconstruction of yearly sediment discharge over 1859–2014, we observed that landscape erosion changes are mostly induced by single storm events, and result from coupled effects of droughts and storms over long time scales. By quantifying temporal variations in the sediment produced by weathering, this analysis enables a new understanding of the linkage between climate forcing and river response, which drives sediment dynamics in the Amazon basin.


2021 ◽  
Vol 31 ◽  
pp. 100306
Author(s):  
Edmundo Wallace Monteiro Lucas ◽  
Francisco de Assis Salviano de Sousa ◽  
Fabrício Daniel dos Santos Silva ◽  
Rodrigo Lins da Rocha Júnior ◽  
David Duarte Cavalcante Pinto ◽  
...  

Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 622
Author(s):  
Tugba Ozturk ◽  
F. Sibel Saygili-Araci ◽  
M. Levent Kurnaz

In this study, projected changes in climate extreme indices defined by the Expert Team on Climate Change Detection and Indices were investigated over Middle East and North Africa. Changes in the daily maximum and minimum temperature- and precipitation- based extreme indices were analyzed for the end of the 21st century compared to the reference period 1971–2000 using regional climate model simulations. Regional climate model, RegCM4.4 was used to downscale two different global climate model outputs to 50 km resolution under RCP4.5 and RCP8.5 scenarios. Results generally indicate an intensification of temperature- and precipitation- based extreme indices with increasing radiative forcing. In particular, an increase in annual minimum of daily minimum temperatures is more pronounced over the northern part of Mediterranean Basin and tropics. High increase in warm nights and warm spell duration all over the region with a pronounced increase in tropics are projected for the period of 2071–2100 together with decrease or no change in cold extremes. According to the results, a decrease in total wet-day precipitation and increase in dry spells are expected for the end of the century.


2020 ◽  
Vol 12 (1) ◽  
pp. 1406-1420
Author(s):  
Jianwei Wang ◽  
Kun Wang ◽  
Tianling Qin ◽  
Hanjiang Nie ◽  
Zhenyu Lv ◽  
...  

AbstractLand use/cover change plays an important role in human development and environmental health and stability. Markov chain and a future land use simulation model were used to predict future change and simulate the spatial distribution of land use in the Huang-Huai-Hai river basin. The results show that cultivated land and grassland are the main land-use types in the basin, accounting for about 40% and 30%, respectively. The area of cultivated land decreased and artificial surfaces increased from 1980 to 2010. The degree of dynamic change of land use after the 1990s was greater than that before the 1990s. There is a high probability of exchange among cultivate land, forest and grassland. The area of forest decreased before 2000 and increased after 2000. Under the three emission scenarios (RCP2.6, RCP4.5, and RCP8.5) of IPSL-CM5A-LR climate model, the area of cultivated land will decrease and that of grassland will increase in the upstream area while it will decrease in the downstream area. The above methods and rules will be of great help to future land use planning.


Water ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 95
Author(s):  
Yilinuer Alifujiang ◽  
Jilili Abuduwaili ◽  
Yongxiao Ge

This study investigated the temporal patterns of annual and seasonal river runoff data at 13 hydrological stations in the Lake Issyk-Kul basin, Central Asia. The temporal trends were analyzed using the innovative trend analysis (ITA) method with significance testing. The ITA method results were compared with the Mann-Kendall (MK) trend test at a 95% confidence level. The comparison results revealed that the ITA method could effectively identify the trends detected by the MK trend test. Specifically, the MK test found that the time series percentage decreased from 46.15% in the north to 25.64% in the south, while the ITA method revealed a similar rate of decrease, from 39.2% to 29.4%. According to the temporal distribution of the MK test, significantly increasing (decreasing) trends were observed in 5 (0), 6 (2), 4 (3), 8 (0), and 8 (1) time series in annual, spring, summer, autumn, and winter river runoff data. At the same time, the ITA method detected significant trends in 7 (1), 9 (3), 6(3), 9 (3), and 8 (2) time series in the study area. As for the ITA method, the “peak” values of 24 time series (26.97%) exhibited increasing patterns, 25 time series (28.09%) displayed increasing patterns for “low” values, and 40 time series (44.94%) showed increasing patterns for “medium” values. According to the “low”, “medium”, and “peak” values, five time series (33.33%), seven time series (46.67%), and three time series (20%) manifested decreasing trends, respectively. These results detailed the patterns of annual and seasonal river runoff data series by evaluating “low”, “medium”, and “peak” values.


Sign in / Sign up

Export Citation Format

Share Document