Conditional Expression Systems for Drosophila suzukii Pest Control

2020 ◽  
pp. 195-215
Author(s):  
Syeda A. Jaffri ◽  
Ying Yan ◽  
Maxwell J. Scott ◽  
Marc F. Schetelig
2019 ◽  
Author(s):  
Jonas Schwirz ◽  
Ying Yan ◽  
Zdenek Franta ◽  
Marc F. Schetelig

AbstractPolycistronic expression systems in insects can be used for applications such as recombinant protein production in cells, enhanced transgenesis methods, and the development of novel pest-control strategies based on the sterile insect technique (SIT). Here we tested the performance of four picornaviral 2A self-cleaving peptides (TaV-2A, DrosCV-2A, FMDV 2A1/31 and FMDV 2A1/32) for the co-expression and differential subcellular targeting of two fluorescent marker proteins in cell lines (Anastrepha suspensa AsE01 and Drosophila melanogaster S2 cells) and in vivo in the pest insect Drosophila suzukii. We found that all four 2A peptides showed comparable activity in cell lines, leading to the production of independent upstream and downstream proteins that were directed to the nucleus or membrane by a C-terminal nuclear localization signal (NLS) on the upstream protein and a poly-lysine/CAAX membrane anchor on the downstream protein. Two of the 2A peptides were inserted into piggyBac constructs to create transgenic D. suzukii strains, confirming efficient ribosomal skipping in vivo. Interestingly, we found that the EGFP-CAAX protein was distributed homogeneously in the membrane whereas the DsRed-CAAX protein formed clumps and aggregates that induced extensive membrane blebbing. Accordingly, only flies expressing the EGFP-CAAX protein could be bred to homozygosity whereas the DsRed-CAAX construct was lethal in the homozygous state. Our results therefore demonstrate that four different 2A constructs and two novel targeting motifs are functional in D. suzukii, and that DsRed-CAAX shows dosage-dependent lethality. These molecular elements could be further used to improve expression systems in insects and generate novel pest control strains.HighlightsFour picornaviral 2A peptides have been studied for their self-cleaving ability in cell lines and in vivo in the pest insect Drosophila suzukii.All tested 2A peptides showed comparable activity that resulted in the production of independent upstream and downstream proteins.The proteins co-expressed by 2A peptides were either directed to the cell nucleus by a C-terminal nuclear localization signal (NLS), or to the cell membrane by a poly-lysine/CAAX membrane anchor.The combination of optimized membrane localization signals fused to DsRed generated an intrinsically lethal phenotype, which can be used to develop novel pest control strains.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3372-3372
Author(s):  
Ashish R. Kumar ◽  
Robert K. Slany ◽  
Jay L. Hess ◽  
John H. Kersey

Expression profiling has become an important tool for understanding gene deregulation in MLL-fusion leukemias. However, the results of gene profiling experiments are difficult to interpret when applied to leukemia cells because (i) leukemias arise in cells that differ greatly in their gene expression profiles, and (ii) leukemias most often require secondary genetic events in addition to the MLL fusion gene. Two principal model systems have been used to understand the direct effects of MLL-fusion genes. Knock-in models have the advantage of the fusion gene being under control of the physiologic promoter. On the other hand, conditional expression systems offer the ability to conduct short term experiments, permitting the analysis of direct effects on downstream genes. In the present combined-analysis, we used the Affymetrix U74Av2 oligonucleotide microarray to evaluate the effects of the MLL-fusion gene in vivo and in vitro respectively using two closely related MLL fusion genes - MLL-AF9 for knock-in and MLL-ENL for conditional expression. In the MLL-AF9 study, we compared gene expression profiles of bone marrow cells from MLL-AF9 knock-in mice (C57Bl/6, MLL-AF9+/−) to those of age-matched wild type mice (Kumar et. al. 2004, Blood). We used a t-test (p<0.05) to selected genes that showed significant changes in expression levels. In the MLL-ENL study, we transformed murine primary hematopoietic cells with a conditional MLL-ENL vector (MLL-ENL fused to the modified ligand-binding domain of the estrogen receptor) such that the fusion protein was active only in the presence of tamoxifen. We then studied the downstream effects of the fusion protein by comparing gene expression profiles of the cells in the presence and absence of tamoxifen. We used a pair-wise comparison analysis to select genes that showed a change in expression level of 1.5 fold or greater in at least two of three experiments (Zeisig et. al. 2004, Mol. Cell Biol.). Those genes that were up-regulated in both datasets were then compiled together. This list included Hoxa7, Hoxa9 and Meis1. The results for these 3 genes were confirmed by quantitative RT-PCR in both the MLL-AF9-knock-in and the MLL-ENL-conditional-expression systems. The remaining candidate genes in the common up-regulated gene set (not yet tested by quantitative RT-PCR) include protein kinases (Bmx, Mapk3, Prkcabp, Acvrl1, Cask), RAS-associated proteins (Rab7, Rab3b), signal transduction proteins (Notch1, Eat2, Shd, Fpr1), cell membrane proteins (Igsf4), chaperones (Hsp70.2), transcription factors (Isgf3g), proteins with unknown functions (Olfm1, Flot1), and hypothetical proteins. The results of the combined analysis demonstrate that these over-expressions are (i) a direct and sustained effect of the MLL-fusion protein, (ii) are independent of secondary events that might be involved in leukemogensis, and (iii) are independent of the two partner genes that participate in these fusions. The over-expression of a few genes in both the -in vitro and in vivo experimental systems makes these molecules very interesting for further studies, to understand the biology of MLL-fusion leukemias and for development of new therapeutic strategies.


2019 ◽  
Vol 19 (1) ◽  
Author(s):  
Hassan M. M. Ahmed ◽  
Luisa Hildebrand ◽  
Ernst A. Wimmer

Abstract Background The invasive fruit pest Drosophila suzukii was reported for the first time in Europe and the USA in 2008 and has spread since then. The adoption of type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) as a tool for genome manipulation provides new ways to develop novel biotechnologically-based pest control approaches. Stage or tissue-specifically expressed genes are of particular importance in the field of insect biotechnology. The enhancer/promoter of the spermatogenesis-specific beta-2-tubulin (β2t) gene was used to drive the expression of fluorescent proteins or effector molecules in testes of agricultural pests and disease vectors for sexing, monitoring, and reproductive biology studies. Here, we demonstrate an improvement to CRISPR/Cas-based genome editing in D. suzukii and establish a sperm-marking system. Results To improve genome editing, we isolated and tested the D. suzukii endogenous promoters of the small nuclear RNA gene U6 to drive the expression of a guide RNA and the Ds heat shock protein 70 promoter to express Cas9. For comparison, we used recombinant Cas9 protein and in vitro transcribed gRNA as a preformed ribonucleoprotein. We demonstrate the homology-dependent repair (HDR)-based genome editing efficiency by applying a previously established transgenic line that expresses DsRed ubiquitously as a target platform. In addition, we isolated the Ds_β2t gene and used its promoter to drive the expression of a red fluorescence protein in the sperm. A transgenic sperm-marking strain was then established by the improved HDR-based genome editing. Conclusion The deployment of the endogenous promoters of the D. suzukii U6 and hsp70 genes to drive the expression of gRNA and Cas9, respectively, enabled the effective application of helper plasmid co-injections instead of preformed ribonucleoproteins used in previous reports for HDR-based genome editing. The sperm-marking system should help to monitor the success of pest control campaigns in the context of the Sterile Insect Technique and provides a tool for basic research in reproductive biology of this invasive pest. Furthermore, the promoter of the β2t gene can be used in developing novel transgenic pest control approaches and the CRISPR/Cas9 system as an additional tool for the modification of previously established transgenes.


2019 ◽  
Author(s):  
Hassan M. M. Ahmed ◽  
Luisa Hildebrand ◽  
Ernst A. Wimmer

Abstract Background: The invasive fruit pest Drosophila suzukii was reported for the first time in Europe and the USA in 2008 and has spread since then. The adoption of type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) as a tool for genome manipulation provides new ways to develop novel biotechnologically-based pest control approaches. Stage or tissue-specifically expressed genes are of particular importance in the field of insect biotechnology. The enhancer/promoter of the spermatogenesis-specific beta-2-tubulin (β2t) gene was used to drive the expression of fluorescent proteins or effector molecules in testes of agricultural pests and diseases vectors for sexing, monitoring, and reproductive biology studies. Here, we demonstrate an improvement to CRISPR/Cas-based genome editing in D. suzukii and establish a sperm-marking system. Results: To improve genome editing, we isolated and tested the D. suzukii endogenous promoters of the small nuclear RNA gene U6 to drive the expression of a guide RNA and the Ds heat shock protein 70 promoter to express Cas9. For comparison, we used recombinant Cas9 protein and in vitro transcribed gRNA as a preformed ribonucleoprotein. We demonstrate the homology-dependent repair (HDR)-based genome editing efficiency by applying a previously established transgenic line that expresses DsRed ubiquitously as a target platform. In addition, we isolated the Ds_β2t gene and used its promoter to drive the expression of a red fluorescence protein in the sperm. A transgenic sperm-marking strain was then established by the improved HDR-based genome editing. Conclusion: The deployment of the endogenous promoters of the D. suzukii U6 and hsp70 genes to drive the expression of gRNA and Cas9, respectively, enabled the effective application of helper plasmid co-injections instead of preformed ribonucleoproteins used in previous reports for HDR-based genome editing. The sperm-marking system should help to monitor the success of pest control campaigns in the context of the Sterile Insect Technique and provides a tool for basic research in reproductive biology of this invasive pest. Furthermore, the promoter of the β2t gene can be used in developing novel transgenic pest control approaches. The CRISPR/Cas9 system can be used as an additional tool for the modification of previously established transgenes.


BMC Genetics ◽  
2020 ◽  
Vol 21 (S2) ◽  
Author(s):  
Ying Yan ◽  
Syeda A. Jaffri ◽  
Jonas Schwirz ◽  
Carl Stein ◽  
Marc F. Schetelig

Abstract Background The spotted-wing Drosophila (Drosophila suzukii) is a widespread invasive pest that causes severe economic damage to fruit crops. The early development of D. suzukii is similar to that of other Drosophilids, but the roles of individual genes must be confirmed experimentally. Cellularization genes coordinate the onset of cell division as soon as the invagination of membranes starts around the nuclei in the syncytial blastoderm. The promoters of these genes have been used in genetic pest-control systems to express transgenes that confer embryonic lethality. Such systems could be helpful in sterile insect technique applications to ensure that sterility (bi-sex embryonic lethality) or sexing (female-specific embryonic lethality) can be achieved during mass rearing. The activity of cellularization gene promoters during embryogenesis controls the timing and dose of the lethal gene product. Results Here, we report the isolation of the D. suzukii cellularization genes nullo, serendipity-α, bottleneck and slow-as-molasses from a laboratory strain. Conserved motifs were identified by comparing the encoded proteins with orthologs from other Drosophilids. Expression profiling confirmed that all four are zygotic genes that are strongly expressed at the early blastoderm stage. The 5′ flanking regions from these cellularization genes were isolated, incorporated into piggyBac vectors and compared in vitro for the promoter activities. The Dsnullo promoter showed the highest activity in the cell culture assays using D. melanogaster S2 cells. Conclusions The similarities in the gene coding and 5′ flanking sequence as well as in the expression pattern of the four cellularization genes between D. melanogaster and D. suzukii, suggest that conserved functions may be involved in both species. The high expression level at the early blastoderm stage of the four cellularization genes were confirmed, thus their promoters can be considered in embryonic lethality systems. While the Dsnullo promoter could be a suitable candidate, all reported promoters here are subject to further in vivo analyses before constructing potential pest control systems.


2019 ◽  
Author(s):  
Hassan M. M. Ahmed ◽  
Luisa Hildebrand ◽  
Ernst A. Wimmer

Abstract Background: The invasive fruit pest Drosophila suzukii has been reported for the first time in Europe and USA in 2008 and has spread since then. The adoption of type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) as a tool for genome manipulation has opened the doors for researchers to develop novel biotechnologically based pest control approaches. Stage and or tissue specific genes are of particular importance in the field of insect biotechnology. The enhancer/promoter of the spermatogenesis specific beta-2-tubulin (β2t) gene was used to drive the expression of fluorescent proteins or effector molecules in testes of agricultural pests and diseases vectors for sexing, monitoring and reproductive biology studies. Here, we demonstrate an improvement in the efficiency of CRISPR/Cas-based genome editing in D. suzukii and establish a sperm-marking system.Results: To improve genome editing we isolated and tested the D. suzukii endogenous promoters of the small nuclear RNA gene U6 to drive the expression of a guide RNA and the Ds heat shock protein 70 promoter to express Cas9. As a comparison, we used recombinant Cas9 protein and in vitro transcribed gRNA as a preformed ribonucleoprotein. To evaluate the homology-dependent repair (HDR)-based genome editing efficiency, we used as a target platform a previously established transgenic line that expresses DsRed ubiquitously. In addition, we isolated Ds_β2t gene and used its promoter to drive the expression of a red fluorescence protein in the sperm. A transgenic sperm-marking strain was then established by the improved HDR-based genome editing.Conclusion: The use of the endogenous promoters of D. suzukii U6 and hsp70 genes to drive the expression of gRNA and Cas9, respectively, showed improved efficiency of gene editing compared to previous reports. The sperm-marking system should help to monitor the success of pest control campaigns in the context of the Sterile Insect Technique and provides a tool for basic research in reproductive biology of this invasive pest. Furthermore, the promoter of the β2t gene can be used in developing novel transgenic pest control approaches. The CRISPR/Cas9 system can be used as an additional tool for the modification of previously established transgenes.


2021 ◽  
Author(s):  
Guillermo Rehermann ◽  
Urban Spitaler ◽  
Karolina Sahle ◽  
Carlo S. Cossu ◽  
Lorenz Delle Donne ◽  
...  

2020 ◽  
Vol 21 (3) ◽  
pp. 705 ◽  
Author(s):  
Yusuke Kato

Expression systems for highly toxic protein genes must be conditional and suppress leakage expression to almost zero because even faint leakage expression may kill host cells, inhibit host growth, and cause loss of plasmids containing the toxic protein genes. The most widely used conditional expression systems are controlled only at the transcriptional level, and complete suppression of leakage expression is challenging. Recent progress on translational control has enabled construction of dual transcriptional-translational control systems in which leakage expression is strongly suppressed. This review summarizes the principles, features, and practical examples of dual transcriptional-translational control systems in bacteria, and provides future perspectives on these systems.


2019 ◽  
Author(s):  
Hassan M. M. Ahmed ◽  
Luisa Hildebrand ◽  
Ernst A. Wimmer

Abstract Background: The invasive fruit pest Drosophila suzukii was reported for the first time in Europe and the USA in 2008 and has spread since then. The adoption of type II clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) as a tool for genome manipulation provides new ways to develop novel biotechnologically-based pest control approaches. Stage or tissue-specifically expressed genes are of particular importance in the field of insect biotechnology. The enhancer/promoter of the spermatogenesis-specific beta-2-tubulin (β2t) gene was used to drive the expression of fluorescent proteins or effector molecules in testes of agricultural pests and diseases vectors for sexing, monitoring, and reproductive biology studies. Here, we demonstrate an improvement to CRISPR/Cas-based genome editing in D. suzukii and establish a sperm-marking system. Results: To improve genome editing, we isolated and tested the D. suzukii endogenous promoters of the small nuclear RNA gene U6 to drive the expression of a guide RNA and the Ds heat shock protein 70 promoter to express Cas9. For comparison, we used recombinant Cas9 protein and in vitro transcribed gRNA as a preformed ribonucleoprotein. We demonstrate the homology-dependent repair (HDR)-based genome editing efficiency by applying a previously established transgenic line that expresses DsRed ubiquitously as a target platform. In addition, we isolated the Ds_β2t gene and used its promoter to drive the expression of a red fluorescence protein in the sperm. A transgenic sperm-marking strain was then established by the improved HDR-based genome editing. Conclusion: The deployment of the endogenous promoters of the D. suzukii U6 and hsp70 genes to drive the expression of gRNA and Cas9, respectively, enabled the effective application of helper plasmid co-injections instead of preformed ribonucleoproteins used in previous reports for HDR-based genome editing. The sperm-marking system should help to monitor the success of pest control campaigns in the context of the Sterile Insect Technique and provides a tool for basic research in reproductive biology of this invasive pest. Furthermore, the promoter of the β2t gene can be used in developing novel transgenic pest control approaches. The CRISPR/Cas9 system can be used as an additional tool for the modification of previously established transgenes.


Sign in / Sign up

Export Citation Format

Share Document