Removal of Emerging Pollutants Using Magnetic Adsorbents

2021 ◽  
pp. 187-222
Author(s):  
Julia Resende de Andrade ◽  
Giani de Vargas Brião ◽  
Meuris Gurgel Carlos da Silva ◽  
Melissa Gurgel Adeodato Vieira
Author(s):  
Yury Rubanov ◽  
Yury Rubanov ◽  
Yulia Tokach ◽  
Yulia Tokach ◽  
Marina Vasilenko ◽  
...  

There was suggested a method of obtaining a complex adsorbent with magnetic properties for the oil spill clean-up from the water surface by means of controlled magnetic field. As magnetic filler a finely-dispersed iron-ore concentrate in the form of magnetite, obtained by wet magnetic separation of crushed iron ore, was suggested. As an adsorbing component the disintegrating electric-furnace steelmaking slag, obtained by dry air-cooling method, was selected. The mass ratio of components slag:magnetite is 1(1,5÷2,0). For cleaning up emergency oil spills with the suggested magnetic adsorbent a facility, which is installed on a twin-hulled oil recovery vessel, was designed. The vessel contains a rectangular case between the vessel hulls with inlet and outlet for the treated water, the bottom of which is a permanently moving belt. Above the belt, at the end point of it there is an oil-gathering drum with magnetic system. The adsorbent is poured to oil-products layer from a hopper, provided with drum feeder. Due to the increased bulk weight the adsorbent sinks rapidly into the oil layer on the water surface. If the large non-floating flocculi are formed, they sink and sedimentate on the moving belt and are moved to the oil-gathering drum. The saturated adsorbent is removed from the drum surface with a scraper, connected with a gutter, with contains a rotating auger.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 215
Author(s):  
Nina Finčur ◽  
Paula Sfîrloagă ◽  
Predrag Putnik ◽  
Vesna Despotović ◽  
Marina Lazarević ◽  
...  

Pharmaceuticals and pesticides are emerging contaminants problematic in the aquatic environment because of their adverse effects on aquatic life and humans. In order to remove them from water, photocatalysis is one of the most modern technologies to be used. First, newly synthesized photocatalysts were successfully prepared using a sol–gel method and characterized by different techniques (XRD, FTIR, UV/Vis, BET and SEM/EDX). The photocatalytic properties of TiO2, ZnO and MgO nanoparticles were examined according to their removal from water for two antibiotics (ciprofloxacin and ceftriaxone) and two herbicides (tembotrione and fluroxypyr) exposed to UV/simulated sunlight (SS). TiO2 proved to be the most efficient nanopowder under UV and SS. Addition of (NH4)2S2O8 led to the faster removal of both antibiotics and herbicide fluroxypyr. The main intermediates were separated and identified for the herbicides and antibiotic ciprofloxacin. Finally, the toxicity of each emerging pollutant mixture and formed intermediates was assessed on wheat germination and biomass production.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1315
Author(s):  
Iván Vallés ◽  
Lucas Santos-Juanes ◽  
Ana M. Amat ◽  
Javier Moreno-Andrés ◽  
Antonio Arques

In the present work, the treatment of a mixture of six emerging pollutants (acetamiprid, acetaminophen, caffeine, amoxicillin, clofibric acid and carbamazepine) by means of photo-Fenton process has been studied, using simulated sunlight as an irradiation source. Removal of these pollutants has been investigated in three different aqueous matrices distinguished by the amount of chlorides (distilled water, 1 g L−1 of NaCl and 30 g L−1 of NaCl) at a pH of 2.8 and 5.0. Interestingly, the presence of 1 g L−1 was able to slightly accelerate the pollutants removal at pH = 5, although the reverse was true at pH = 2.8. This is attributed to the pH-dependent interference of chlorides on photo-Fenton process, that is more acute in an acidic medium. As a matter of fact, the fastest reaction was obtained at pH = 3.5, in agreement with literature results. Monitoring of hydrogen peroxide consumption and iron in solution indicates that interference with chlorides is due to changes in the interaction between iron and the peroxide, rather than a scavenging effect of chloride for hydroxyl radicals. Experiments were also carried out with real seawater and showed higher inhibition than in the NaCl experiments, probably due to the effect of different dissolved salts present in natural water.


Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 1013
Author(s):  
Ján Derco ◽  
Andreja Žgajnar Gotvajn ◽  
Oľga Čižmárová ◽  
Jozef Dudáš ◽  
Lenka Sumegová ◽  
...  

Micropollutants and emerging substances pose a serious problem to environmental sustainability and remediation, due to their widespread use and applications in everyday life. This group of chemicals is diverse but with common toxic and harmful properties. Their concentration in the environment is often very low; however, due to their recalcitrant nature, they are persistent in air, water, and soil. From an engineering point of view, the challenge is not straightforward. It is difficult to remove these contaminants from complex mixtures of substances by conventional methods used in wastewater and drinking water treatment. Ozonation and ozone-based AOPs are accepted processes of degradation of resistant substances or at least enhancement of their biodegradability. The aim of this review paper is to present research trends aimed at solving problems in the research and application of ozone-based processes in the removal of micropollutants from wastewater, thus preventing leakage of harmful substances into surface water, soil, and groundwater and facilitating the reuse of wastewater. Priority substances, micropollutants and emerging pollutants, as well as processes and technologies for their transformation and elimination, are briefly specified. Results obtained by the authors in solving research projects that were aimed at eliminating selected micropollutants by ozonation and ozone-based AOPs are also presented. This review focuses on selected alkylphenols, petroleum substances, and organochlorine pesticides.


Author(s):  
Kirubanandam Grace Pavithra ◽  
Vasudevan Jaikumar ◽  
Ponnusamy Senthil Kumar ◽  
Panneerselvam Sundarrajan

Chemosphere ◽  
2021 ◽  
pp. 130891
Author(s):  
S.A. Gokulakrishnan ◽  
G. Arthanareeswaran ◽  
Laszlo Zsuzsanna ◽  
Gábor Veréb ◽  
Szabolcs Kertész ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document