Creation of Ontological Knowledge Bases in the Semantic Web by Analyzing Table Structures

Author(s):  
Vitalina Babenko ◽  
Igor Shostak ◽  
Mariia Danova ◽  
Olena Feoktystova
Keyword(s):  
2021 ◽  
Vol 178 (4) ◽  
pp. 315-346
Author(s):  
Domenico Cantone ◽  
Marianna Nicolosi-Asmundo ◽  
Daniele Francesco Santamaria

We present a KE-tableau-based implementation of a reasoner for a decidable fragment of (stratified) set theory expressing the description logic 𝒟ℒ〈4LQSR,×〉(D) (𝒟ℒD4,×, for short). Our application solves the main TBox and ABox reasoning problems for 𝒟ℒD4,×. In particular, it solves the consistency and the classification problems for 𝒟ℒD4,×-knowledge bases represented in set-theoretic terms, and a generalization of the Conjunctive Query Answering problem in which conjunctive queries with variables of three sorts are admitted. The reasoner, which extends and improves a previous version, is implemented in C++. It supports 𝒟ℒD4,×-knowledge bases serialized in the OWL/XML format and it admits also rules expressed in SWRL (Semantic Web Rule Language).


2018 ◽  
Vol 2 ◽  
pp. e25614 ◽  
Author(s):  
Florian Pellen ◽  
Sylvain Bouquin ◽  
Isabelle Mougenot ◽  
Régine Vignes-Lebbe

Xper3 (Vignes Lebbe et al. 2016) is a collaborative knowledge base publishing platform that, since its launch in november 2013, has been adopted by over 2 thousand users (Pinel et al. 2017). This is mainly due to its user friendly interface and the simplicity of its data model. The data are stored in MySQL Relational DBs, but the exchange format uses the TDWG standard format SDD (Structured Descriptive DataHagedorn et al. 2005). However, each Xper3 knowledge base is a closed world that the author(s) may or may not share with the scientific community or the public via publishing content and/or identification key (Kopfstein 2016). The explicit taxonomic, geographic and phenotypic limits of a knowledge base are not always well defined in the metadata fields. Conversely terminology vocabularies, such as Phenotype and Trait Ontology PATO and the Plant Ontology PO, and software to edit them, such as Protégé and Phenoscape, are essential in the semantic web, but difficult to handle for biologist without computer skills. These ontologies constitute open worlds, and are expressed themselves by RDF triples (Resource Description Framework). Protégé offers vizualisation and reasoning capabilities for these ontologies (Gennari et al. 2003, Musen 2015). Our challenge is to combine the user friendliness of Xper3 with the expressive power of OWL (Web Ontology Language), the W3C standard for building ontologies. We therefore focused on analyzing the representation of the same taxonomic contents under Xper3 and under different models in OWL. After this critical analysis, we chose a description model that allows automatic export of SDD to OWL and can be easily enriched. We will present the results obtained and their validation on two knowledge bases, one on parasitic crustaceans (Sacculina) and the second on current ferns and fossils (Corvez and Grand 2014). The evolution of the Xper3 platform and the perspectives offered by this link with semantic web standards will be discussed.


Author(s):  
Alexander Felfernig ◽  
Gerhard Friedrich ◽  
Dietmar Jannach ◽  
Markus Stumptner ◽  
Markus Zanker
Keyword(s):  

Author(s):  
Floriano Scioscia ◽  
Michele Ruta ◽  
Giuseppe Loseto ◽  
Filippo Gramegna ◽  
Saverio Ieva ◽  
...  

The Semantic Web of Things (SWoT) aims to support smart semantics-enabled applications and services in pervasive contexts. Due to architectural and performance issues, most Semantic Web reasoners are often impractical to be ported: they are resource consuming and are basically designed for standard inference tasks on large ontologies. On the contrary, SWoT use cases generally require quick decision support through semantic matchmaking in resource-constrained environments. This paper describes Mini-ME (the Mini Matchmaking Engine), a mobile inference engine designed from the ground up for the SWoT. It supports Semantic Web technologies and implements both standard (subsumption, satisfiability, classification) and non-standard (abduction, contraction, covering, bonus, difference) inference services for moderately expressive knowledge bases. In addition to an architectural and functional description, usage scenarios and experimental performance evaluation are presented on PC (against other popular Semantic Web reasoners), smartphone and embedded single-board computer testbeds.


Author(s):  
Christopher Walton

In the introductory chapter of this book, we discussed the means by which knowledge can be made available on the Web. That is, the representation of the knowledge in a form by which it can be automatically processed by a computer. To recap, we identified two essential steps that were deemed necessary to achieve this task: 1. We discussed the need to agree on a suitable structure for the knowledge that we wish to represent. This is achieved through the construction of a semantic network, which defines the main concepts of the knowledge, and the relationships between these concepts. We presented an example network that contained the main concepts to differentiate between kinds of cameras. Our network is a conceptualization, or an abstract view of a small part of the world. A conceptualization is defined formally in an ontology, which is in essence a vocabulary for knowledge representation. 2. We discussed the construction of a knowledge base, which is a store of knowledge about a domain in machine-processable form; essentially a database of knowledge. A knowledge base is constructed through the classification of a body of information according to an ontology. The result will be a store of facts and rules that describe the domain. Our example described the classification of different camera features to form a knowledge base. The knowledge base is expressed formally in the language of the ontology over which it is defined. In this chapter we elaborate on these two steps to show how we can define ontologies and knowledge bases specifically for the Web. This will enable us to construct Semantic Web applications that make use of this knowledge. The chapter is devoted to a detailed explanation of the syntax and pragmatics of the RDF, RDFS, and OWL Semantic Web standards. The resource description framework (RDF) is an established standard for knowledge representation on the Web. Taken together with the associated RDF Schema (RDFS) standard, we have a language for representing simple ontologies and knowledge bases on the Web.


Author(s):  
Michel Simonet ◽  
Radja Messai ◽  
Gayo Diallo

Health data and knowledge had been structured through medical classifications and taxonomies long before ontologies had acquired their pivot status of the Semantic Web. Although there is no consensus on a common definition of an ontology, it is necessary to understand their main features to be able to use them in a pertinent and efficient manner for data mining purposes. This chapter introduces the basic notions about ontologies, presents a survey of their use in medicine and explores some related issues: knowledge bases, terminology, and information retrieval. It also addresses the issues of ontology design, ontology representation, and the possible interaction between data mining and ontologies.


2016 ◽  
Vol 25 (01) ◽  
pp. 184-187
Author(s):  
J. Charlet ◽  
L. F. Soualmia ◽  

Summary Objectives: To summarize excellent current research in the field of Knowledge Representation and Management (KRM) within the health and medical care domain. Method: We provide a synopsis of the 2016 IMIA selected articles as well as a related synthetic overview of the current and future field activities. A first step of the selection was performed through MEDLINE querying with a list of MeSH descriptors completed by a list of terms adapted to the KRM section. The second step of the selection was completed by the two section editors who separately evaluated the set of 1,432 articles. The third step of the selection consisted of a collective work that merged the evaluation results to retain 15 articles for peer-review. Results: The selection and evaluation process of this Yearbook’s section on Knowledge Representation and Management has yielded four excellent and interesting articles regarding semantic interoperability for health care by gathering heterogeneous sources (knowledge and data) and auditing ontologies. In the first article, the authors present a solution based on standards and Semantic Web technologies to access distributed and heterogeneous datasets in the domain of breast cancer clinical trials. The second article describes a knowledge-based recommendation system that relies on ontologies and Semantic Web rules in the context of chronic diseases dietary. The third article is related to concept-recognition and text-mining to derive common human diseases model and a phenotypic network of common diseases. In the fourth article, the authors highlight the need for auditing the SNOMED CT. They propose to use a crowd-based method for ontology engineering. Conclusions: The current research activities further illustrate the continuous convergence of Knowledge Representation and Medical Informatics, with a focus this year on dedicated tools and methods to advance clinical care by proposing solutions to cope with the problem of semantic interoperability. Indeed, there is a need for powerful tools able to manage and interpret complex, large-scale and distributed datasets and knowledge bases, but also a need for user-friendly tools developed for the clinicians in their daily practice.


2010 ◽  
Vol 10 (4-6) ◽  
pp. 547-563 ◽  
Author(s):  
MARTIN SLOTA ◽  
JOÃO LEITE

AbstractThe need for integration of ontologies with nonmonotonic rules has been gaining importance in a number of areas, such as the Semantic Web. A number of researchers addressed this problem by proposing a unified semantics forhybrid knowledge basescomposed of both an ontology (expressed in a fragment of first-order logic) and nonmonotonic rules. These semantics have matured over the years, but only provide solutions for the static case when knowledge does not need to evolve.In this paper we take a first step towards addressing the dynamics of hybrid knowledge bases. We focus on knowledge updates and, considering the state of the art of belief update, ontology update and rule update, we show that current solutions are only partial and difficult to combine. Then we extend the existing work on ABox updates with rules, provide a semantics for such evolving hybrid knowledge bases and study its basic properties.To the best of our knowledge, this is the first time that an update operator is proposed for hybrid knowledge bases.


2018 ◽  
Vol 10 (8) ◽  
pp. 81 ◽  
Author(s):  
Fabio Viola ◽  
Luca Roffia ◽  
Francesco Antoniazzi ◽  
Alfredo D’Elia ◽  
Cristiano Aguzzi ◽  
...  

This article presents Tarsier, a tool for the interactive 3D visualization of RDF graphs. Tarsier is mainly intended to support teachers introducing students to Semantic Web data representation formalisms and developers in the debugging of applications based on Semantic Web knowledge bases. The tool proposes the metaphor of semantic planes as a way to visualize an RDF graph. A semantic plane contains all the RDF terms sharing a common concept; it can be created, and further split into several planes, through a set of UI controls or through SPARQL 1.1 queries, with the full support of OWL and RDFS. Thanks to the 3D visualization, links between semantic planes can be highlighted and the user can navigate within the 3D scene to find the better perspective to analyze data. Data can be gathered from generic SPARQL 1.1 protocol services. We believe that Tarsier will enhance the human friendliness of semantic technologies by: (1) helping newcomers assimilate new data representation formats; and (2) increasing the capabilities of inspection to detect relevant situations even in complex RDF graphs.


Author(s):  
Floriano Scioscia ◽  
Michele Ruta ◽  
Giuseppe Loseto ◽  
Filippo Gramegna ◽  
Saverio Ieva ◽  
...  

The Semantic Web and Internet of Things visions are converging toward the so-called Semantic Web of Things (SWoT). It aims to enable smart semantic-enabled applications and services in ubiquitous contexts. Due to architectural and performance issues, it is currently impractical to use existing Semantic Web reasoners. They are resource consuming and are basically optimized for standard inference tasks on large ontologies. On the contrary, SWoT use cases generally require quick decision support through semantic matchmaking in resource-constrained environments. This paper presents Mini-ME, a novel mobile inference engine designed from the ground up for the SWoT. It supports Semantic Web technologies and implements both standard (subsumption, satisfiability, classification) and non-standard (abduction, contraction, covering) inference services for moderately expressive knowledge bases. In addition to an architectural and functional description, usage scenarios are presented and an experimental performance evaluation is provided both on a PC testbed (against other popular Semantic Web reasoners) and on a smartphone.


Sign in / Sign up

Export Citation Format

Share Document