Estimation of Geodetic Mass Balance for Bada Shigri Glacier and Samudra Tapu Glacier in Chandra Basin, India

Author(s):  
M. Geetha Priya ◽  
Ishmohan Bahuguna ◽  
D. Krishnaveni ◽  
Suresh Devaraj
2019 ◽  
Vol 13 (9) ◽  
pp. 2361-2383 ◽  
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Huilin Li ◽  
Feiteng Wang ◽  
Ping Zhou

Abstract. The direct glaciological method provides in situ observations of annual or seasonal surface mass balance, but can only be implemented through a succession of intensive in situ measurements of field networks of stakes and snow pits. This has contributed to glacier surface mass-balance measurements being sparse and often discontinuous in the Tien Shan. Nevertheless, long-term glacier mass-balance measurements are the basis for understanding climate–glacier interactions and projecting future water availability for glacierized catchments in the Tien Shan. Riegl VZ®-6000 long-range terrestrial laser scanner (TLS), typically using class 3B laser beams, is exceptionally well suited for repeated glacier mapping, and thus determination of annual and seasonal geodetic mass balance. This paper introduces the applied TLS for monitoring summer and annual surface elevation and geodetic mass changes of Urumqi Glacier No. 1 as well as delineating accurate glacier boundaries for 2 consecutive mass-balance years (2015–2017), and discusses the potential of such technology in glaciological applications. Three-dimensional changes of ice and firn–snow bodies and the corresponding densities were considered for the volume-to-mass conversion. The glacier showed pronounced thinning and mass loss for the four investigated periods; glacier-wide geodetic mass balance in the mass-balance year 2015–2016 was slightly more negative than in 2016–2017. Statistical comparison shows that agreement between the glaciological and geodetic mass balances can be considered satisfactory, indicating that the TLS system yields accurate results and has the potential to monitor remote and inaccessible glacier areas where no glaciological measurements are available as the vertical velocity component of the glacier is negligible. For wide applications of the TLS in glaciology, we should use stable scan positions and in-situ-measured densities of snow–firn to establish volume-to-mass conversion.


2018 ◽  
Vol 64 (248) ◽  
pp. 917-931 ◽  
Author(s):  
RUBÉN BASANTES-SERRANO ◽  
ANTOINE RABATEL ◽  
CHRISTIAN VINCENT ◽  
PASCAL SIRGUEY

ABSTRACTUnderstanding the effects of climate on glaciers requires precise estimates of ice volume change over several decades. This is achieved by the geodetic mass balance computed by two means: (1) the digital elevation model (DEM) comparison (SeqDEM) allows measurements over the entire glacier, however the low contrast over glacierized areas is an issue for the DEM generation through the photogrammetric techniques and (2) the profiling method (SePM) is a faster alternative but fails to capture the spatial variability of elevation changes. We present a new framework (SSD) that relies upon the spatial variability of the elevation change to densify a sampling network to optimize the surface-elevation change quantification. Our method was tested in two small glaciers over different periods. We conclude that the SePM overestimates the elevation change by ~20% with a mean difference of ~1.00 m (root mean square error (RMSE) = ~3.00 m) compared with results from the SeqDEM method. A variogram analysis of the elevation changes showed a mean difference of <0.10 m (RMSE = ~2.40 m) with SSD approach. A final assessment on the largest glacier in the French Alps confirms the high potential of our method to compute the geodetic mass balance, without going through the generation of a full-density DEM, but with a similar accuracy than the SeqDEM approach.


2010 ◽  
Vol 4 (3) ◽  
pp. 1151-1194
Author(s):  
A. Fischer

Abstract. Glacier mass balance is measured with the direct or the geodetic method. In this study, the geodetic mass balances of six Austrian glaciers in 19 periods between 1953 and 2006 are compared to the direct mass balances in the same periods. The mean annual geodetic mass balance for all periods is −0.5 m w.e./year. The mean difference between the geodetic and the direct data is −0.7 m w.e., the minimum −7.3 m w.e. and the maximum 5.6 m w.e. The accuracy of geodetic mass balance resulting from the accuracy of the DEMs ranges from 2 m w.e. for photogrammetric data to 0.002 m w.e. for LIDAR data. Basal melt, seasonal snow cover and density changes of the surface layer contribute up to 0.7 m w.e. for the period of 10 years to the difference to the direct method. The characteristics of published data of Griesgletscher, Gulkana Glacier, Lemon Creek glacier, South Cascade, Storbreen, Storglaciären, and Zongo Glacier is similar to these Austrian glaciers. For 26 analyzed periods with an average length of 18 years the mean difference between the geodetic and the direct data is −0.4 m w.e., the minimum −7.2 m w.e. and the maximum 3.6 m w.e. Longer periods between the acquisition of the DEMs do not necessarily result in a higher accuracy of the geodetic mass balance. Specific glaciers show specific trends of the difference between the direct and the geodetic data according to their type and state. In conclusion, geodetic and direct mass balance data are complementary, but differ systematically.


2022 ◽  
Vol 14 (2) ◽  
pp. 272
Author(s):  
Chunhai Xu ◽  
Zhongqin Li ◽  
Feiteng Wang ◽  
Jianxin Mu ◽  
Xin Zhang

The eastern Tien Shan hosts substantial mid-latitude glaciers, but in situ glacier mass balance records are extremely sparse. Haxilegen Glacier No. 51 (eastern Tien Shan, China) is one of the very few well-measured glaciers, and comprehensive glaciological measurements were implemented from 1999 to 2011 and re-established in 2017. Mass balance of Haxilegen Glacier No. 51 (1999–2015) has recently been reported, but the mass balance record has not extended to the period before 1999. Here, we used a 1:50,000-scale topographic map and long-range terrestrial laser scanning (TLS) data to calculate the area, volume, and mass changes for Haxilegen Glacier No. 51 from 1964 to 2018. Haxilegen Glacier No. 51 lost 0.34 km2 (at a rate of 0.006 km2 a−1 or 0.42% a−1) of its area during the period 1964–2018. The glacier experienced clearly negative surface elevation changes and geodetic mass balance. Thinning occurred almost across the entire glacier surface, with a mean value of −0.43 ± 0.12 m a−1. The calculated average geodetic mass balance was −0.36 ± 0.12 m w.e. a−1. Without considering the error bounds of mass balance estimates, glacier mass loss over the past 50 years was in line with the observed and modeled mass balance (−0.37 ± 0.22 m w.e. a−1) that was published for short time intervals since 1999 but was slightly less negative than glacier mass loss in the entire eastern Tien Shan. Our results indicate that Riegl VZ®-6000 TLS can be widely used for mass balance measurements of unmonitored individual glaciers.


2020 ◽  
Vol 66 (256) ◽  
pp. 175-187 ◽  
Author(s):  
David R. Rounce ◽  
Tushar Khurana ◽  
Margaret B. Short ◽  
Regine Hock ◽  
David E. Shean ◽  
...  

AbstractThe response of glaciers to climate change has major implications for sea-level change and water resources around the globe. Large-scale glacier evolution models are used to project glacier runoff and mass loss, but are constrained by limited observations, which result in models being over-parameterized. Recent systematic geodetic mass-balance observations provide an opportunity to improve the calibration of glacier evolution models. In this study, we develop a calibration scheme for a glacier evolution model using a Bayesian inverse model and geodetic mass-balance observations, which enable us to quantify model parameter uncertainty. The Bayesian model is applied to each glacier in High Mountain Asia using Markov chain Monte Carlo methods. After 10,000 steps, the chains generate a sufficient number of independent samples to estimate the properties of the model parameters from the joint posterior distribution. Their spatial distribution shows a clear orographic effect indicating the resolution of climate data is too coarse to resolve temperature and precipitation at high altitudes. Given the glacier evolution model is over-parameterized, particular attention is given to identifiability and the need for future work to integrate additional observations in order to better constrain the plausible sets of model parameters.


2019 ◽  
Vol 65 (252) ◽  
pp. 565-579 ◽  
Author(s):  
WILLIAM KOCHTITZKY ◽  
HESTER JISKOOT ◽  
LUKE COPLAND ◽  
ELLYN ENDERLIN ◽  
ROBERT MCNABB ◽  
...  

ABSTRACTDonjek Glacier has an unusually short and regular surge cycle, with eight surges identified since 1935 from aerial photographs and satellite imagery with a ~12 year repeat interval and ~2 year active phase. Recent surges occurred during a period of long-term negative mass balance and cumulative terminus retreat of 2.5 km since 1874. In contrast to previous work, we find that the constriction where the valley narrows and bedrock lithology changes, 21 km from the terminus, represents the upper limit of surging, with negligible surface speed or elevation change up-glacier from this location. This positions the entire surge-type portion of the glacier in the ablation zone. The constriction geometry does not act as the dynamic balance line, which we consistently find at 8 km from the glacier terminus. During the 2012–2014 surge event, the average lowering rate in the lowest 21 km of the glacier was 9.6 m a−1, while during quiescence it was 1.0 m a−1. Due to reservoir zone refilling, the ablation zone has a positive geodetic balance in years immediately following a surge event. An active surge phase can result in a strongly negative geodetic mass balance over the surge-type portion of the glacier.


2019 ◽  
Vol 65 (249) ◽  
pp. 136-148 ◽  
Author(s):  
CESAR DESCHAMPS-BERGER ◽  
CHRISTOPHER NUTH ◽  
WARD VAN PELT ◽  
ETIENNE BERTHIER ◽  
JACK KOHLER ◽  
...  

ABSTRACTIn this study, we combine remote sensing, in situ and model-derived datasets from 1966 to 2014 to calculate the mass-balance components of Kronebreen, a fast-flowing tidewater glacier in Svalbard. For the well-surveyed period 2009–2014, we are able to close the glacier mass budget within the prescribed errors. During these 5 years, the glacier geodetic mass balance was −0.69 ± 0.12 m w.e. a−1, while the mass budget method led to a total mass balance of −0.92 ± 0.16 m w.e. a−1, as a consequence of a strong frontal ablation (−0.78 ± 0.11 m w.e. a−1), and a slightly negative climatic mass balance (−0.14 ± 0.11 m w.e. a−1). The trend towards more negative climatic mass balance between 1966–1990 (+0.20 ± 0.05 m w.e. a−1) and 2009–2014 is not reflected in the geodetic mass balance trend. Therefore, we suspect a reduction in ice-discharge in the most recent period. Yet, these multidecadal changes in ice-discharge cannot be measured from the available observations and thus are only estimated with relatively large errors as a residual of the mass continuity equation. Our study presents the multidecadal evolution of the dynamics and mass balance of a tidewater glacier and illustrates the errors introduced by inferring one unmeasured mass-balance component from the others.


2015 ◽  
Vol 9 (2) ◽  
pp. 525-540 ◽  
Author(s):  
M. Fischer ◽  
M. Huss ◽  
M. Hoelzle

Abstract. Since the mid-1980s, glaciers in the European Alps have shown widespread and accelerating mass losses. This article presents glacier-specific changes in surface elevation, volume and mass balance for all glaciers in the Swiss Alps from 1980 to 2010. Together with glacier outlines from the 1973 inventory, the DHM25 Level 1 digital elevation models (DEMs) for which the source data over glacierized areas were acquired from 1961 to 1991 are compared to the swissALTI3D DEMs from 2008 to 2011 combined with the new Swiss Glacier Inventory SGI2010. Due to the significant differences in acquisition dates of the source data used, mass changes are temporally homogenized to directly compare individual glaciers or glacierized catchments. Along with an in-depth accuracy assessment, results are validated against volume changes from independent photogrammetrically derived DEMs of single glaciers. Observed volume changes are largest between 2700 and 2800 m a.s.l. and remarkable even above 3500 m a.s.l. The mean geodetic mass balance is −0.62 ± 0.07 m w.e. yr−1 for the entire Swiss Alps over the reference period 1980–2010. For the main hydrological catchments, it ranges from −0.52 to −1.07 m w.e. yr−1. The overall volume loss calculated from the DEM differencing is −22.51 ± 1.76 km3.


2012 ◽  
Vol 58 (211) ◽  
pp. 953-964 ◽  
Author(s):  
Maria Shahgedanova ◽  
Gennady Nosenko ◽  
Irina Bushueva ◽  
Mikhail Ivanov

AbstractChanges in area of 30 small glaciers (mostly <1 km2) in the northern Polar Urals (67.568.25° N) between 1953 and 2000 were assessed using historic aerial photography from 1953 and 1960, ASTER and panchromatic Landsat ETM+ imagery from 2000, and data from 1981 and 2008 terrestrial surveys. Changes in volume and geodetic mass balance of IGAN and Obruchev glaciers were calculated using data from terrestrial surveys in 1963 and 2008. In total, glacier area declined by 22.3 ± 3.9% in the 1953/60-2000 period. The areas of individual glaciers decreased by 4-46%. Surfaces of Obruchev and IGAN glaciers lowered by 22.5 ± 1.7 m and 14.9 ± 2.1 m. Over 45 years, geodetic mass balances of Obruchev and IGAN glaciers were -20.66 ± 2.91 and -13.54 ± 2.57 mw.e. respectively. Glacier shrinkage in the Polar Urals is related to a summer warming of 1°C between 1953-81 and 1981-2008 and its rates are consistent with other regions of northern Asia but are higher than in Scandinavia. While glacier shrinkage intensified in the 1981-2000 period relative to 1953-81, increasing winter precipitation and shading effects slowed glacier wastage in 2000-08.


Sign in / Sign up

Export Citation Format

Share Document