Cloud Change Prediction System Based on Deep Learning

Author(s):  
Dai Zheng ◽  
Zhao Kanglian ◽  
Li Wenfeng

In recent days, deep learning models become a significant research area because of its applicability in diverse domains. In this paper, we employ an optimal deep neural network (DNN) based model for classifying diabetes disease. The DNN is employed for diagnosing the patient diseases effectively with better performance. To further improve the classifier efficiency, multilayer perceptron (MLP) is employed to remove the misclassified instance in the dataset. Then, the processed data is again provided as input to the DNN based classification model. The use of MLP significantly helps to remove the misclassified instances. The presented optimal data classification model is experimented on the PIMA Indians Diabetes dataset which holds the medical details of 768 patients under the presence of 8 attributes for every record. The obtained simulation results verified the superior nature of the presented model over the compared methods.


Water ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 2685
Author(s):  
Xin Wang ◽  
Wenke Wang ◽  
Bing Yan

Tropical cyclone (TC) motion has an important impact on both human lives and infrastructure. Predicting TC intensity is crucial, especially within the 24 h warning time. TC intensity change prediction can be regarded as a problem of both regression and classification. Statistical forecasting methods based on empirical relationships and traditional numerical prediction methods based on dynamical equations still have difficulty in accurately predicting TC intensity. In this study, a prediction algorithm for TC intensity changes based on deep learning is proposed by exploring the joint spatial features of three-dimensional (3D) environmental conditions that contain the basic variables of the atmosphere and ocean. These features can also be interpreted as fused characteristics of the distributions and interactions of these 3D environmental variables. We adopt a 3D convolutional neural network (3D-CNN) for learning the implicit correlations between the spatial distribution features and TC intensity changes. Image processing technology is also used to enhance the data from a small number of TC samples to generate the training set. Considering the instantaneous 3D status of a TC, we extract deep hybrid features from TC image patterns to predict 24 h intensity changes. Compared to previous studies, the experimental results show that the mean absolute error (MAE) of TC intensity change predictions and the accuracy of the classification as either intensifying or weakening are both significantly improved. The results of combining features of high and low spatial layers confirm that considering the distributions and interactions of 3D environmental variables is conducive to predicting TC intensity changes, thus providing insight into the process of TC evolution.


2021 ◽  
Author(s):  
Tianqi Wu ◽  
Jian Liu ◽  
Zhiye Guo ◽  
Jie Hou ◽  
Jianlin Cheng

Abstract Protein structure prediction is an important problem in bioinformatics and has been studied for decades. However, there are still few open-source comprehensive protein structure prediction packages publicly available in the field. In this paper, we present our latest open-source protein tertiary structure prediction system - MULTICOM2, an integration of template-based modeling (TBM) and template-free modeling (FM) methods. The template-based modeling uses sequence alignment tools with deep multiple sequence alignments to search for structural templates, which are much faster and more accurate than MULTICOM1. The template-free (ab initio or de novo) modeling uses the inter-residue distances predicted by DeepDist to reconstruct tertiary structure models without using any known structure as template. In the blind CASP14 experiment, the average TM-score of the models predicted by our server predictor based on the MULTICOM2 system is 0.720 for 58 TBM (regular) domains and 0.514 for 38 FM and FM/TBM (hard) domains, indicating that MULTICOM2 is capable of predicting good tertiary structures across the board. It can predict the correct fold for 76 CASP14 domains (95% regular domains and 55% hard domains) if only one prediction is made for a domain. The success rate is increased to 3% for both regular and hard domains if five predictions are made per domain. Moreover, the prediction accuracy of the pure template-free structure modeling method on both TBM and FM targets is very close to the combination of template-based and template-free modeling methods. This demonstrates that the distance-based template-free modeling method powered by deep learning can largely replace the traditional template-based modeling method even on TBM targets that TBM methods used to dominate and therefore provides a uniform structure modeling approach to any protein. Finally, on the 38 CASP14 FM and FM/TBM hard domains, MULTICOM2 server predictors (MULTICOM-HYBRID, MULTICOM-DEEP, MULTICOM-DIST) were ranked among the top 20 automated server predictors in the CASP14 experiment. After combining multiple predictors from the same research group as one entry, MULTICOM-HYBRID was ranked no. 5. The source code of MULTICOM2 is freely available at https://github.com/multicom-toolbox/multicom/tree/multicom_v2.0.


Revista Vitae ◽  
2015 ◽  
Vol 22 (3) ◽  
Author(s):  
Juan Felipe Puerta Barrera ◽  
Darío Amaya Hurtado ◽  
Robinson Jiménez Moreno

2020 ◽  
Author(s):  
Tom Andersson ◽  
Fruzsina Agocs ◽  
Scott Hosking ◽  
María Pérez-Ortiz ◽  
Brooks Paige ◽  
...  

<p>Over recent decades, the Arctic has warmed faster than any region on Earth. The rapid decline in Arctic sea ice extent (SIE) is often highlighted as a key indicator of anthropogenic climate change. Changes in sea ice disrupt Arctic wildlife and indigenous communities, and influence weather patterns as far as the mid-latitudes. Furthermore, melting sea ice attenuates the albedo effect by replacing the white, reflective ice with dark, heat-absorbing melt ponds and open sea, increasing the Sun’s radiative heat input to the Arctic and amplifying global warming through a positive feedback loop. Thus, the reliable prediction of sea ice under a changing climate is of both regional and global importance. However, Arctic sea ice presents severe modelling challenges due to its complex coupled interactions with the ocean and atmosphere, leading to high levels of uncertainty in numerical sea ice forecasts.</p><p>Deep learning (a subset of machine learning) is a family of algorithms that use multiple nonlinear processing layers to extract increasingly high-level features from raw input data. Recent advances in deep learning techniques have enabled widespread success in diverse areas where significant volumes of data are available, such as image recognition, genetics, and online recommendation systems. Despite this success, and the presence of large climate datasets, applications of deep learning in climate science have been scarce until recent years. For example, few studies have posed the prediction of Arctic sea ice in a deep learning framework. We investigate the potential of a fully data-driven, neural network sea ice prediction system based on satellite observations of the Arctic. In particular, we use inputs of monthly-averaged sea ice concentration (SIC) maps since 1979 from the National Snow and Ice Data Centre, as well as climatological variables (such as surface pressure and temperature) from the European Centre for Medium-Range Weather Forecasts reanalysis (ERA5) dataset. Past deep learning-based Arctic sea ice prediction systems tend to overestimate sea ice in recent years - we investigate the potential to learn the non-stationarity induced by climate change with the inclusion of multi-decade global warming indicators (such as average Arctic air temperature). We train the networks to predict SIC maps one month into the future, evaluating network prediction uncertainty by ensembling independent networks with different random weight initialisations. Our model accounts for seasonal variations in the drivers of sea ice by controlling for the month of the year being predicted. We benchmark our prediction system against persistence, linear extrapolation and autoregressive models, as well as September minimum SIE predictions from submissions to the Sea Ice Prediction Network's Sea Ice Outlook. Performance is evaluated quantitatively using the root mean square error and qualitatively by analysing maps of prediction error and uncertainty.</p>


Sign in / Sign up

Export Citation Format

Share Document