Estimation of Grain-Level Residual Stresses in a Quenched Cylindrical Sample of Aluminum Alloy AA5083 Using Genetic Programming

Author(s):  
Laura Millán ◽  
Gabriel Kronberger ◽  
J. Ignacio Hidalgo ◽  
Ricardo Fernández ◽  
Oscar Garnica ◽  
...  
2009 ◽  
Vol 209 (9) ◽  
pp. 4502-4508 ◽  
Author(s):  
Z.T. Tang ◽  
Z.Q. Liu ◽  
Y.Z. Pan ◽  
Y. Wan ◽  
X. Ai

2012 ◽  
Vol 430-432 ◽  
pp. 881-885
Author(s):  
Cai Jun Gan ◽  
Kai Liao

The level and distribution of residual stresses have great impact on dimensional stability, while Vibratory Stress Relief (VSR) is an effective technology to relax or homogenize residual stresses. Experimental study on residual stresses distribution, residual strain energy and machining deformation of 7075 high-strength aluminum alloy thick plate under different aging process status shows that VSR can effectively decrease the amplitude and strain energy density, and enhance stability of dislocation structures and phase states in metal microscopic volume, then internal residual stresses are homogenized to enhance components’ anti-deformation capacity. In addition, the capability in maintaining dimensional stability from VSR is better than that from traditional mechanical stretching process


2012 ◽  
Vol 723 ◽  
pp. 208-213 ◽  
Author(s):  
Yi Wan ◽  
Chen Li ◽  
Zhan Qiang Liu ◽  
Shu Feng Sun

Residual stresses generated in milling process affect the performance of machined components. Milling residual stresses correlate closely with the cutting parameters. In this paper, the generation and distribution of surface residual stresses in milling of aluminum alloy 7050-T7451 was investigated. The cutting speed changes from 300m/min to 3000m/min. In the experiments, the residual stresses on the surface of specimen are detected by X-ray diffraction technique. The result shows that compressive residual stresses are generated when cutting speed is under 500 m/min. In feed and its orthogonal direction, the effect of cutting speed and feed rate on residual stresses is similar. The formation of the residual stresses can be explained by thermo-mechanical coupling effects.


2013 ◽  
Vol 99 ◽  
pp. 159-168 ◽  
Author(s):  
Z. Semari ◽  
A. Aid ◽  
A. Benhamena ◽  
A. Amrouche ◽  
M. Benguediab ◽  
...  

2011 ◽  
Vol 189-193 ◽  
pp. 3778-3781
Author(s):  
Yin Fang Jiang ◽  
Lei Fang ◽  
Zhi Fei Li ◽  
Zhen Zhou Tang

Laser shock processing is a technique similar to shot peening that imparts compressive residual stresses in materials for improved fatigue resistance. Finite element analysis techniques have been applied to predict the residual stresses from Laser shock processing. The purpose of this paper is to investigate of the different sheet thickness interactions on the stress distribution during the laser shock processing of 7050-T7451 aluminum alloy by using the finite element software. The results indicate that the sheet thickness has little effects on the compression stress in the depth of sheet, but great impacts on the reserve side.


Author(s):  
Hiroki Ota ◽  
Kristine Munk Jespersen ◽  
Kei Saito ◽  
Keita Wada ◽  
Kazuki Okamoto ◽  
...  

Abstract In recent years, for the aim of weight reduction of transportation equipment, carbon fiber reinforced thermoplastics (CFRTPs), which have high recyclability and formability, are becoming suitable for mass production. Additionally, with the development of multi-material structures, excellent technologies for joining metal and CFRTPs are required. In present industry, joining between dissimilar materials include adhesive bonding and mechanical joining methods, however, these methods still have some problems, and therefore an alternative bonding method without adhesive and mechanical joining is required for joining CFRTPs and metals. Thus, this study focused on direct bonding between CFRTP and an aluminum alloy, by producing a nanostructure on the surface of the aluminum alloy. The nanostructure penetrates the CFRTP matrix causing an anchoring effect, which results in significant bonding strength improvement. The influence of the nanostructure on the fracture toughness for the directly bonded CFRTP and aluminum was evaluated by static double cantilever beam (DCB) testing. Due to the difference of the thermal expansion coefficients between the CFRTP laminates and the aluminum alloy, significant residual stresses are generated. The effect of the thermal residual stresses on the fracture toughness along with the resulting mode mixity (mode I and II) was calculated. It is found that the thermal stresses introduce a significant mode mixity of the fracture toughness.


Sign in / Sign up

Export Citation Format

Share Document