Influence of Milling Parameters on Surface Residual Stresses of 7050-T7451 Aluminum Alloy

2012 ◽  
Vol 723 ◽  
pp. 208-213 ◽  
Author(s):  
Yi Wan ◽  
Chen Li ◽  
Zhan Qiang Liu ◽  
Shu Feng Sun

Residual stresses generated in milling process affect the performance of machined components. Milling residual stresses correlate closely with the cutting parameters. In this paper, the generation and distribution of surface residual stresses in milling of aluminum alloy 7050-T7451 was investigated. The cutting speed changes from 300m/min to 3000m/min. In the experiments, the residual stresses on the surface of specimen are detected by X-ray diffraction technique. The result shows that compressive residual stresses are generated when cutting speed is under 500 m/min. In feed and its orthogonal direction, the effect of cutting speed and feed rate on residual stresses is similar. The formation of the residual stresses can be explained by thermo-mechanical coupling effects.

2012 ◽  
Vol 499 ◽  
pp. 217-222 ◽  
Author(s):  
C. Li ◽  
Yi Wan ◽  
R.R. Zhang ◽  
Zhan Qiang Liu

The residual stress in the milling of 7050-T7451 aluminum alloy was measured using X-ray diffraction method in which Psi-oscillation, Phi-oscillation and peak fit were adopted. Cutting speed and feed are main variables which were considered in this study. The results show that compressive residual stresses are generated in surface for the down milling generally, which is mainly due to burnishing effect between the tools flank face and the machined surface. In feed and its orthogonal direction, the effect of cutting speed and feed speed on residual stress is similar. Therefore, required residual stress can be achieved by controlling the cutting condition such as cutting speed, feed speed etc.


2007 ◽  
Vol 129 (4) ◽  
pp. 609-613 ◽  
Author(s):  
A. Sahaya Grinspan ◽  
R. Gnanamoorthy

A new surface modification process was developed to introduce compressive residual stresses at the surface of components. In this process, instead of oil droplets a high-velocity cavitation jet (cloud of oil bubbles) impinges on the surface of the component to be peened. The impact pressure generated during implosion of cavitation bubbles causes severe plastic deformation at the surface. Consequently, beneficial compressive stresses are developed at the surface. In order to find the potential of this process, aluminum alloy AA6063-T6 specimens were peened at a constant cavitation number with various nozzle-traveling velocities. Residual stress induced by oil jet cavitation peening was measured using X-ray diffraction. Oil cavitation jet peening results in a smooth and hard surface. The developed compressive residual stresses at the peened surface are about 52%, 42%, and 35% of yield strength in samples for peened at nozzle traveling velocities of 0.05mm∕s, 0.10mm∕s, and 0.15mm∕s, respectively.


2011 ◽  
Vol 284-286 ◽  
pp. 284-292 ◽  
Author(s):  
Shao Chun Sun ◽  
Zhi Yuan Chen ◽  
Qiang Wu ◽  
De Xin Ma ◽  
Yu Tao Zhao

In locally long fiber reinforced aluminum parts two types residual stresses exist. They are the microscopic residual stress between fiber and matrix and the macroscopic residual stress between reinforced and unreinforced zones. The residual stresses between fiber and matrix in γ-Al2O3 long fiber reinforced aluminum alloy Al-6-1-1 were measured with X-ray Diffraction process as well as simulated with FEM method. The results indicated that the residual stresses in both fiber and matrix were distributed very unequally. The maximum tensile residual stress occurred at the boundary in the matrix and the maximum compressive residual stresses occurred near the boundary in the fiber. The macroscopic residual stresses between the reinforced and unreinforced zones were also measured with borehole method as well as simulated with FEM. It was found that the macroscopic residual stresses at most locations in both the reinforced and unreinforced zones were not harmfully high. However in both reinforced and unreinforced zones there were small sub-zones of very large tensile residual stresses.


2014 ◽  
Vol 996 ◽  
pp. 628-633 ◽  
Author(s):  
Naoufel Ben Moussa ◽  
Zouhayar Al-Adel ◽  
Habib Sidhom ◽  
Chedly Braham

A numerical approach has been developed to predict the near surface residual stresses induced by turning in orthogonal cutting configuration of aluminum alloy AA7075-T651. This approach is based on a Lagrangian formulation using the finite element software Abaqus–Explicit. The calculated residual stress profiles were validated by experimental measurements using X-ray diffraction method on samples turned under different cutting conditions. Using this method, the effect of the cutting speed and the feed on the machining residual stress has been established.


1999 ◽  
Vol 121 (3) ◽  
pp. 336-340 ◽  
Author(s):  
S. R. Daniewicz ◽  
S. D. Cummings

A traversing water jet was used to impact the surface of 1100 series aluminum specimens in an effort to generate compressive residual stresses on the surface. Stresses induced by the water peening operation were measured using X-ray diffraction, and compressive stress increases as large as 60 percent of the monotonic yield strength resulted. Surface roughness and hardness were also measured. Finite element modeling of a stationary water jet impinging on an elastic-plastic half-space was performed to characterize the water peening process. Surface residual stresses were found to be a result of sub-surface plastic deformations.


2006 ◽  
Vol 524-525 ◽  
pp. 317-322 ◽  
Author(s):  
Volkan Güley ◽  
A. Erman Tekkaya ◽  
Turhan Savaş ◽  
Feridun Özhan

The aim of this study is to investigate surface residual stresses after heat treatment and grinding processes in the production of rollers. The residual stresses were measured using the X-ray diffraction method utilizing chromium radiation, which has an average penetration depth of 5 μm incident on AISI-E52100 (100Cr6) ball bearing steel. Taguchi design of experiments (DOE) is applied to define the set of experiments for grinding, which facilitates evaluation of the individual influences of process parameters on residual stresses and also eliminates unnecessary experiments. Response of residual stresses to each parameter is evaluated with the help of the results of residual stress measurements by X-ray diffraction. In grinding with aluminum oxide wheels, it was concluded that the lower the cutting speed and the higher the workpiece speed the higher the magnitude of surface compressive residual stresses. Higher compressive stresses were measured in axial direction compared to the circumferential direction after the grinding process.


Materials ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1154
Author(s):  
Diego E. Lozano ◽  
George E. Totten ◽  
Yaneth Bedolla-Gil ◽  
Martha Guerrero-Mata ◽  
Marcel Carpio ◽  
...  

Automotive components manufacturers use the 5160 steel in leaf and coil springs. The industrial heat treatment process consists in austenitizing followed by the oil quenching and tempering process. Typically, compressive residual stresses are induced by shot peening on the surface of automotive springs to bestow compressive residual stresses that improve the fatigue resistance and increase the service life of the parts after heat treatment. In this work, a high-speed quenching was used to achieve compressive residual stresses on the surface of AISI/SAE 5160 steel samples by producing high thermal gradients and interrupting the cooling in order to generate a case-core microstructure. A special laboratory equipment was designed and built, which uses water as the quenching media in a high-speed water chamber. The severity of the cooling was characterized with embedded thermocouples to obtain the cooling curves at different depths from the surface. Samples were cooled for various times to produce different hardened case depths. The microstructure of specimens was observed with a scanning electron microscope (SEM). X-ray diffraction (XRD) was used to estimate the magnitude of residual stresses on the surface of the specimens. Compressive residual stresses at the surface and sub-surface of about −700 MPa were obtained.


2013 ◽  
Vol 834-836 ◽  
pp. 861-865 ◽  
Author(s):  
Yong Shou Liang ◽  
Jun Xue Ren ◽  
Yuan Feng Luo ◽  
Ding Hua Zhang

An experimental study was conducted to determine cutting parameters of high-speed milling of Ti-17 according to their effects on residual stresses. First, three groups of single factor experiments were carried out to reveal the effects of cutting parameters on residual stresses. Then sensitivity models were established to evaluate the influence degrees of cutting parameters on residual stresses. After that, three criteria were proposed to determine cutting parameters from experimental parameter ranges. In the experiments, the cutting parameter ranges are recommended as [371.8, 406.8] m/min, [0.363, 0.412] mm and [0, 0.018] mm/z for cutting speed, cutting depth and feed per tooth, respectively.


1994 ◽  
Vol 38 ◽  
pp. 455-461
Author(s):  
R. Lin ◽  
B. Jaensson ◽  
T. M. Holden ◽  
R. B. Rogge ◽  
J. H. Root

Sleeve coldworking (SCW) is a mechanical process used in the aircraft industry to strengthen fastener holes of structural parts. By cold-expanding the holes, compressive residual stresses and a high dislocation density are introduced around the holes, the effect of which is to counteract the initiation and propagation of fatigue cracks and thus increase the fatigue life of the parts. The knowledge of residual stress due to SCW is therefore crucial for assessing the fatigue properties of a treated part. In this study, residual stresses were investigated, by employing neutron and X-ray diffraction methods, in a lug specimen that was sleeve coldworked and fatigued. The specimen had been used for testing the influence of the SCW process on fatigue life and crack propagation behaviour under constant amplitude or variable amplitude cyclic loading.


Sign in / Sign up

Export Citation Format

Share Document