scholarly journals Assistive Robot for Mobility Enhancement of Impaired Students for Barrier-Free Education: A Proof of Concept

Author(s):  
Alessandro Freddi ◽  
Catia Giaconi ◽  
Sabrina Iarlori ◽  
Sauro Longhi ◽  
Andrea Monteriù ◽  
...  

AbstractSmart wheelchairs are in the category of assistive robots, which interact physically and/or non-physically with people with physical disabilities to extend their autonomy. Smart wheelchairs are assistive robots that enhance mobility, and can be especially useful for improving access to university premises. This paper proposes a smart wheelchair that can be integrated with an academic management system to enable students who have serious leg problems and cannot walk on their own to reach any academic building or room on a university campus autonomously. The proposed smart wheelchair receives information from the academic management system about the spaces on campus, the lesson schedule, the office hours of lecturers, and so on. Students can select the desired task from the user interface. The smart wheelchair can then guide the student autonomously to the desired point of interest, while planning the best barrier-free route inside the campus/building and, simultaneously, avoiding fixed and moving obstacles. The assistive robot has localization and navigation capabilities, which allow students to move about campus freely and autonomously, and benefit from a barrier-free education.

Author(s):  
Tawanda Mushiri ◽  
Panashe Adrian Mombeyarara ◽  
Thanks Marisa

The use of a wheelchair for normal routines or rehabilitation has various physiological and psychological implications. The use of contact assistive robots in developing countries is limited mainly due to their expensive nature. The benefits of exoskeleton use include health improvement, increased self-dependency, and self-sustenance. The chapter offers a solution through the design of a cheap contact assistive robot for the disabled. The design procedure includes the integration of acquired knowledge on gait training and existing exoskeletons acquired from intense research, visits to rehabilitation centers, and use of computer-aided software for design and simulations. A fully functioning scaled prototype was made that demonstrated the operating principle of the actual design. The design provides a successful baseline for further development of exoskeletons suitable and cheaper for developing countries with an initial estimated total material cost of USD$9000.


2015 ◽  
Vol 8 (7) ◽  
Author(s):  
Mohammad Syuhaimi Ab-Rahman ◽  
Abdul Rahman Mohd Yusoff ◽  
Nasrul Amir Abdul ◽  
Afiq Hipni

Robotics ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 1 ◽  
Author(s):  
Tejas Kumar Shastha ◽  
Maria Kyrarini ◽  
Axel Gräser

Meal assistant robots form a very important part of the assistive robotics sector since self-feeding is a priority activity of daily living (ADL) for people suffering from physical disabilities like tetraplegia. A quick survey of the current trends in this domain reveals that, while tremendous progress has been made in the development of assistive robots for the feeding of solid foods, the task of feeding liquids from a cup remains largely underdeveloped. Therefore, this paper describes an assistive robot that focuses specifically on the feeding of liquids from a cup using tactile feedback through force sensors with direct human–robot interaction (HRI). The main focus of this paper is the application of reinforcement learning (RL) to learn what the best robotic actions are, based on the force applied by the user. A model of the application environment is developed based on the Markov decision process and a software training procedure is designed for quick development and testing. Five of the commonly used RL algorithms are investigated, with the intention of finding the best fit for training, and the system is tested in an experimental study. The preliminary results show a high degree of acceptance by the participants. Feedback from the users indicates that the assistive robot functions intuitively and effectively.


2017 ◽  
Vol 41 (S1) ◽  
pp. S104-S104
Author(s):  
S. Loi ◽  
R. Khosla ◽  
K. Nguyen ◽  
N. Lautenschlager ◽  
D. Velakoulis

ObjectivesSocially-assistive robots have been used with older adults with cognitive impairment in residential care, and found to improve mood and well-being. However, there is little known about the potential benefits in adults with other neuropsychiatric symptoms.AimsThe aim of this project was explore the utility and acceptability of a socially-assistive robot in engaging adults with a variety of neuropsychiatric symptoms.MethodsBetty, a socially-assistive robot was installed in a unit which specialises in the assessment and diagnosis of adults presenting with neuropsychiatric symptoms. She is 39 cm tall, has a baby-face appearance and has the ability to engage individuals through personalised services which can be programmed according to individuals’ preferences. These include singing songs and playing games. Training for the nursing staff who were responsible for incorporating Betty into the unit activities was provided. The frequency, duration and type of activity which Betty was involved in was recorded. Patients admitted who could provide informed consent were able to be included in the project. These participants completed pre- and post-questionnaires.ResultsEight patients (mean age 54.4 years, SD 13.6) who had diagnoses ranging from depression and schizophrenia participated. Types of activities included singing songs, playing Bingo and reading the news. Participants reported that they were comfortable with Betty and did not feel concerned in her presence. They enjoyed interacting with her.ConclusionsThis pilot project demonstrated that participants found Betty to be acceptable and she was useful in engaging them in activities. Future directions would involve larger sample sizes and different settings.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2011 ◽  
Vol 08 (01) ◽  
pp. 103-126 ◽  
Author(s):  
JEANIE CHAN ◽  
GOLDIE NEJAT ◽  
JINGCONG CHEN

Recently, there has been a growing body of research that supports the effectiveness of using non-pharmacological cognitive and social training interventions to reduce the decline of or improve brain functioning in individuals suffering from cognitive impairments. However, implementing and sustaining such interventions on a long-term basis is difficult as they require considerable resources and people, and can be very time-consuming for healthcare staff. Our research focuses on making these interventions more accessible to healthcare professionals through the aid of robotic assistants. The objective of our work is to develop an intelligent socially assistive robot with abilities to recognize and identify human affective intent to determine its own appropriate emotion-based behavior while engaging in assistive interactions with people. In this paper, we present the design of a novel human-robot interaction (HRI) control architecture that allows the robot to provide social and cognitive stimulation in person-centered cognitive interventions. Namely, the novel control architecture is designed to allow a robot to act as a social motivator by encouraging, congratulating and assisting a person during the course of a cognitively stimulating activity. Preliminary experiments validate the effectiveness of the control architecture in providing assistive interactions during a HRI-based person-directed activity.


Author(s):  
Goldie Nejat ◽  
Maurizio Ficocelli

The objective of a socially assistive robot is to create a close and effective interaction with a human user for the purpose of giving assistance. In particular, the social interaction, guidance and support that a socially assistive robot can provide a person can be very beneficial to patient-centered care. However, there are a number of conundrums that must be addressed in designing such a robot. This work addresses one of the main limitations in the development of intelligent task-driven socially assistive robots: Robotic control architecture design and implementation with explicit social and assistive task functionalities. In particular, in this paper, a unique emotional behavior module is presented and implemented in a learning-based control architecture for human-robot interactions (HRI). The module is utilized to determine the appropriate emotions of the robot, as motivated by the well-being of the person, during assistive task-driven interactions. A novel online updating technique is used in order to allow the emotional model to adapt to new people and scenarios. Preliminary experiments presented show the effectiveness of utilizing robotic emotional assistive behavior during HRI in assistive scenarios.


2017 ◽  
Vol 6 (2) ◽  
pp. 71-78
Author(s):  
Anton Satria Prabuwono ◽  
Khalid Hammed S. Allehaibi ◽  
Kurnianingsih Kurnianingsih

Older people with chronic conditions even lead to some disabilities face many challenges in performing daily life. Assistive robot is considered as a tool to provide companionship and assist daily life of older people and disabled people. This paper presents a review of assistive robotic technology, particularly for older people and disabled people. The result of this review constitutes a step towards the development of assistive robots capable of helping some problems of older people and disabled people. Hence, they may remain in at home and live independently.


Sign in / Sign up

Export Citation Format

Share Document