Operational Assimilation of Radar Data from the European EUMETNET Programme OPERA in the Météo-France Convective-Scale Model AROME

2021 ◽  
pp. 629-644
Author(s):  
Maud Martet ◽  
Pierre Brousseau ◽  
Eric Wattrelot ◽  
Frank Guillaume ◽  
Jean-François Mahfouf
2013 ◽  
Vol 141 (11) ◽  
pp. 3691-3709 ◽  
Author(s):  
Ryan A. Sobash ◽  
David J. Stensrud

Abstract Several observing system simulation experiments (OSSEs) were performed to assess the impact of covariance localization of radar data on ensemble Kalman filter (EnKF) analyses of a developing convective system. Simulated Weather Surveillance Radar-1988 Doppler (WSR-88D) observations were extracted from a truth simulation and assimilated into experiments with localization cutoff choices of 6, 12, and 18 km in the horizontal and 3, 6, and 12 km in the vertical. Overall, increasing the horizontal localization and decreasing the vertical localization produced analyses with the smallest RMSE for most of the state variables. The convective mode of the analyzed system had an impact on the localization results. During cell mergers, larger horizontal localization improved the results. Prior state correlations between the observations and state variables were used to construct reverse cumulative density functions (RCDFs) to identify the correlation length scales for various observation-state pairs. The OSSE with the smallest RMSE employed localization cutoff values that were similar to the horizontal and vertical length scales of the prior state correlations, especially for observation-state correlations above 0.6. Vertical correlations were restricted to state points closer to the observations than in the horizontal, as determined by the RCDFs. Further, the microphysical state variables were correlated with the reflectivity observations on smaller scales than the three-dimensional wind field and radial velocity observations. The ramifications of these findings on localization choices in convective-scale EnKF experiments that assimilate radar data are discussed.


2011 ◽  
Vol 28 (5) ◽  
pp. 617-639 ◽  
Author(s):  
G. Scialom ◽  
Y. Lemaître

Abstract The apparent heat source Q1 and the apparent moisture sink Q2 are crucial parameters for precipitating systems studies because they allow for the evaluation of their contribution in water and energy transport and infer some of the mechanisms that are responsible for their evolution along their lifetime. In this paper, a new approach is proposed to estimate Q2 budgets from radar observations within precipitating areas at the scale of the measurements, that is, either convective scale or mesoscale, depending on the selected retrieval zone. This approach relies upon a new analysis of the radar reflectivity based on the concept of the traditional velocity–azimuth display (VAD) analysis. From the following five steps, Q2 is deduced from velocity and reflectivity fields: (i) mixing ratio retrieval using empirical relations, (ii) radial wind analysis using the VAD analysis, (iii) radar reflectivity analysis using a new analysis called reflectivity–azimuth display (RAD), (iv) retrieval of mixing ratio derivatives, and (v) Q2 retrieval. The originality and the main interest of the present approach with respect to previous studies rely on the fact it uses radar data alone and is based on a relatively low-cost analysis, allowing future systematic application on large datasets. In the present paper, this analysis is described and its robustness is evaluated and illustrated on three cases observed during the African Monsoon Multidisciplinary Analyses (AMMA) special observing period (SOP) field experiment (15 June–15 September) by means of the Recherche sur les Orages et Nuages par un Système Associé de Radars Doppler (RONSARD) radar. Results are analyzed in terms of the convective or stratiform character of observed precipitation.


2012 ◽  
Vol 27 (4) ◽  
pp. 832-855 ◽  
Author(s):  
Juanzhen Sun ◽  
Stanley B. Trier ◽  
Qingnong Xiao ◽  
Morris L. Weisman ◽  
Hongli Wang ◽  
...  

Abstract Sensitivity of 0–12-h warm-season precipitation forecasts to atmospheric initial conditions, including those from different large-scale model analyses and from rapid cycled (RC) three-dimensional variational data assimilations (3DVAR) with and without radar data, is investigated for a 6-day period during the International H2O Project. Neighborhood-based precipitation verification is used to compare forecasts made with the Advanced Research core of the Weather Research and Forecasting Model (ARW-WRF). Three significant convective episodes are examined by comparing the precipitation patterns and locations from different forecast experiments. From two of these three case studies, causes for the success and failure of the RC data assimilation in improving forecast skill are shown. Results indicate that the use of higher-resolution analysis in the initialization, rapid update cycling via WRF 3DVAR data assimilation, and the additional assimilation of radar observations each play a role in shortening the period of the initial precipitation spinup as well as in placing storms closer to observations, thus improving precipitation forecast skill by up to 8–9 h. Impacts of data assimilation differ for forecasts initialized at 0000 and 1200 UTC. The case studies show that the pattern and location of the forecasted precipitation were noticeably improved with radar data assimilation for the two late afternoon cases that featured lines of convection driven by surface-based cold pools. In contrast, the RC 3DVAR, both with and without radar data, had negative impacts on convective forecasts for a case of morning elevated convection associated with a midlatitude short-wave trough.


2021 ◽  
Vol 21 (1) ◽  
pp. 463-480
Author(s):  
Nadia Fourrié ◽  
Mathieu Nuret ◽  
Pierre Brousseau ◽  
Olivier Caumont

Abstract. This study was performed in the framework of HyMeX (Hydrological cycle in the Mediterranean Experiment), which aimed to study the heavy precipitation that regularly affects the Mediterranean area. A reanalysis with a convective-scale model AROME-WMED (Application of Research to Operations at MEsoscale western Mediterranean) was performed, which assimilated most of the available data for a 2-month period corresponding to the first special observation period of the field campaign (Fourrié et al., 2019). Among them, observations related to the low-level humidity flow were assimilated. Such observations are important for the description of the feeding of the convective mesoscale systems with humidity (Duffourg and Ducrocq, 2011; Bresson et al., 2012; Ricard et al., 2012). Among them there were a dense reprocessed network of high-quality Global Navigation Satellite System (GNSS) zenithal total delay (ZTD) observations, reprocessed data from wind profilers, lidar-derived vertical profiles of humidity (ground and airborne) and Spanish radar data. The aim of the paper is to assess the impact of the assimilation of these four observation types on the analyses and the forecasts from the 3 h forecast range (first guess) up to the 48 h forecast range. In order to assess this impact, several observing system experiments (OSEs) or so-called denial experiments, were carried out by removing one single data set from the observation data set assimilated in the reanalysis. Among the evaluated observations, it is found that the ground-based GNSS ZTD data set provides the largest impact on the analyses and the forecasts, as it represents an evenly spread and frequent data set providing information at each analysis time over the AROME-WMED domain. The impact of the reprocessing of GNSS ZTD data also improves the forecast quality, but this impact is not statistically significant. The assimilation of the Spanish radar data improves the 3 h precipitation forecast quality as well as the short-term (30 h) precipitation forecasts, but this impact remains located over Spain. Moreover, marginal impact from wind profilers was observed on wind background quality. No impacts have been found regarding lidar data, as they represent a very small data set, mainly located over the sea.


2017 ◽  
Author(s):  
Pauline Martinet ◽  
Domenico Cimini ◽  
Francesco De Angelis ◽  
Guylaine Canut ◽  
Vinciane Unger ◽  
...  

Abstract. A RPG-HATPRO ground-based microwave radiometer (MWR) was operated in a deep Alpine valley during the Passy-2015 field campaign. This experiment aims at investigating how stable boundary layers during wintertime conditions drive the accumulation of pollutants. In order to understand the atmospheric processes in the valley, MWR continuously provide vertical profiles of temperature and humidity at a high time frequency, providing valuable information to follow the evolution of the boundary layer. A one-dimensional variational (1DVAR) retrieval technique has been implemented during the field campaign to optimally combine MWR and 1 h forecasts from the French convective scale model AROME. Retrievals were compared to radiosonde data launched at least every 3 hours during two intensive observation periods (IOP). An analysis of the AROME forecast errors during the IOPs has shown a large underestimation of the surface cooling during the strongest stable episode. MWR brightness temperatures were monitored against simulations from the radiative transfer model ARTS2 (Atmospheric Radiative Transfer Simulator) and radiosonde launched during the field campaign. Large errorswere observed for most transparent channels (i.e., 51–52 GHz) affected by absorption model and calibration uncertainties while a good agreement was found for opaque channels (i.e., 54–58 GHz). Based on this monitoring, a bias correction of raw brightness temperature measurements was applied before the 1DVAR retrievals. 1DVAR retrievals were found to significantly improve the AROME forecasts up to 3 km but mainly below 1 km and to outperform usual statistical regressions above 1 km. With the present implementation, a root-mean-square-error (RMSE) of 1 K through all the atmospheric profile was obtained with values within 0.5 K below 500 m in clear-sky conditions. The use of lower elevation angles (up to 5°) in the MWR scanning and the bias correction were found to improve the retrievals below 1000 m. MWR retrievals were found to catch very well deep nearsurface temperature inversions. Larger errors were observed in cloudy conditions due to difficulty of ground-based MWR to resolve high level inversions that are still challenging. Finally, 1DVAR retrievals were optimized for the analysis of the IOPs by using radiosondes as backgrounds in the 1DVAR algorithm instead of the AROME forecasts. A significant improvement of the retrievals in cloudy conditions and below 1000 m in clear-sky was observed. From this study, we can conclude that MWR are expected to bring valuable information into NWP models up to 3 km altitude both in clear-sky and cloudy-sky conditions with the maximum improvement found around 500 m. With an accuracy between 0.5 and 1 K in RMSE, our study has also proved MWR to be capable of resolving deep near-surface temperature inversions observed in complex terrain during highly stable boundary layer conditions.


2019 ◽  
Vol 34 (1) ◽  
pp. 233-254 ◽  
Author(s):  
T. H. M. Stein ◽  
W. Keat ◽  
R. I. Maidment ◽  
S. Landman ◽  
E. Becker ◽  
...  

Abstract Since 2016, the South African Weather Service (SAWS) has been running convective-scale simulations to assist with forecast operations across southern Africa. These simulations are run with a tropical configuration of the Met Office Unified Model (UM), nested in the Met Office global model, but without data assimilation. For November 2016, convection-permitting simulations at 4.4- and 1.5-km grid lengths are compared against a simulation at 10-km grid length with convection parameterization (the current UM global atmosphere configuration) to identify the benefits of increasing model resolution for forecasting convection across southern Africa. The simulations are evaluated against satellite rainfall estimates, CloudSat vertical cloud profiles, and SAWS radar data. In line with previous studies using the UM, on a monthly time scale, the diurnal cycle of convection and the distribution of rainfall rates compare better against observations when convection-permitting model configurations are used. The SAWS radar network provides a three-dimensional composite of radar reflectivity for northeast South Africa at 6-min intervals, allowing the evaluation of the vertical development of precipitating clouds and of the timing of the onset of deep convection. Analysis of four case study days indicates that the 4.4-km simulations have a later onset of convection than the 1.5-km simulations, but there is no consistent bias of the simulations against the radar observations across the case studies.


2013 ◽  
Vol 141 (10) ◽  
pp. 3369-3387 ◽  
Author(s):  
Kao-Shen Chung ◽  
Weiguang Chang ◽  
Luc Fillion ◽  
Monique Tanguay

Abstract A high-resolution ensemble Kalman filter (HREnKF) system at the convective scale has been developed based on the Canadian Meteorological Center's operational global ensemble Kalman filter (EnKF) system. This study focuses on the very early stage of transition from purely homogeneous isotropic background error correlations to situation-dependent correlations. It has been found that forecast error structures can develop situation-dependent features in as little as 15 min. Furthermore, the dynamic and thermodynamic variables require different periods of time to build up their own forecast error structures. Differences in these structures between regions with and without precipitation are also investigated. An examination of temperature tendencies revealed that physical processes are as important as dynamical forcing in determining the structure of convective-scale errors structures, and that once physical processes become active, these structures change rapidly before the onset of precipitation. This study is intended to be the basis for a systematic exploration in the near future of the usefulness of the HREnKF system in assimilating high-density observations such as radar data.


2014 ◽  
Vol 142 (11) ◽  
pp. 4017-4035 ◽  
Author(s):  
Yu-Chieng Liou ◽  
Jian-Luen Chiou ◽  
Wei-Hao Chen ◽  
Hsin-Yu Yu

Abstract This research combines an advanced multiple-Doppler radar synthesis technique with the thermodynamic retrieval method, originally proposed by Gal-Chen, and a moisture/temperature adjustment scheme, and formulates a sequential procedure. The focus is on applying this procedure to improve the model quantitative precipitation nowcasting (QPN) skill in the convective scale up to 3 hours. A series of (observing system simulation experiment) OSSE-type tests and a real case study are conducted to investigate the performance of this algorithm under different conditions. It is shown that by using the retrieved three-dimensional wind, thermodynamic, and microphysical parameters to reinitialize a fine-resolution numerical model, its QPN skill can be significantly improved. Since the Gal-Chen method requires the horizontal average properties of the weather system at each altitude, utilization of in situ radiosonde(s) to obtain this additional information for the retrieval is tested. When sounding data are not available, it is demonstrated that using the model results to replace the role played by observing devices is also a feasible choice. The moisture field is obtained through a simple, but effective, adjusting scheme and is found to be beneficial to the rainfall forecast within the first hour after the reinitialization of the model. Since this algorithm retrieves the unobserved state variables instantaneously from the wind measurements and directly uses them to reinitialize the model, fewer radar data and a shorter model spinup time are needed to correct the rainfall forecasts, in comparison with other data assimilation techniques such as four-dimensional variational data assimilation (4DVAR) or ensemble Kalman filter (EnKF) methods.


Sign in / Sign up

Export Citation Format

Share Document