Immune Response Model Fitting to CD4$$^+$$ T Cell Data in Lymphocytic Choriomeningitis Virus LCMV infection

2021 ◽  
pp. 1-10
Author(s):  
Atefeh Afsar ◽  
Filipe Martins ◽  
Bruno M. P. M. Oliveira ◽  
Alberto A. Pinto
1991 ◽  
Vol 174 (6) ◽  
pp. 1425-1429 ◽  
Author(s):  
W P Fung-Leung ◽  
T M Kündig ◽  
R M Zinkernagel ◽  
T W Mak

The immune response against lymphocytic choriomeningitis virus (LCMV) was studied in a mutant mouse strain that does not possess CD8+ T lymphocytes. Virus-specific cytotoxic T cell activity was generated in spleens of wild-type mice in an acute LCMV infection but was not measurable in mutant mice. Injection of replicating LCMV into footpads of wild-type mice induced a CD8+ T cell-mediated swelling that peaked on day 8, followed by a CD4+ T cell-mediated swelling that peaked on day 11, whereas mutant mice exhibited only the CD4+ T cell-mediated swelling. After intracerebral inoculation with LCMV-Armstrong, all wild-type mice died of classical CD8+ T cell-dependent choriomeningitis in 8-10 days. Mutant mice showed symptoms of general malaise but most of them survived. Mutant mice depleted of CD4+ T cells by monoclonal antibody treatment showed no clinical signs of sickness. On day 9 after intravenous infection with LCMV-WE, virus was detected at high titers in spleens and livers of mutant mice but not in those of wild-type mice. On day 70 after injection of LCMV-WE into footpads, virus was not detected in wild-type mice and in one of the three mutant mice tested, but was still measurable in kidneys of the other two mutant mice. These results confirm in a new animal model that CD8+ T cell-mediated immunity is crucial in LCMV clearance and in the immunopathological disease during LCMV infection. In addition, our results demonstrated a less severe form of choriomeningitis mediated by CD4+ T cells and slow clearance of LCMV by alternative pathways independent of CD8+ T cells.


2007 ◽  
Vol 81 (10) ◽  
pp. 4928-4940 ◽  
Author(s):  
Maya F. Kotturi ◽  
Bjoern Peters ◽  
Fernando Buendia-Laysa ◽  
John Sidney ◽  
Carla Oseroff ◽  
...  

ABSTRACT CD8+ T-cell responses control lymphocytic choriomeningitis virus (LCMV) infection in H-2b mice. Although antigen-specific responses against LCMV infection are well studied, we found that a significant fraction of the CD8+ CD44hi T-cell response to LCMV in H-2b mice was not accounted for by known epitopes. We screened peptides predicted to bind major histocompatibility complex class I and overlapping 15-mer peptides spanning the complete LCMV proteome for gamma interferon (IFN-γ) induction from CD8+ T cells derived from LCMV-infected H-2b mice. We identified 19 novel epitopes. Together with the 9 previously known, these epitopes account for the total CD8+ CD44hi response. Thus, bystander T-cell activation does not contribute appreciably to the CD8+ CD44hi pool. Strikingly, 15 of the 19 new epitopes were derived from the viral L polymerase, which, until now, was not recognized as a target of the cellular response induced by LCMV infection. The L epitopes induced significant levels of in vivo cytotoxicity and conferred protection against LCMV challenge. Interestingly, protection from viral challenge was best correlated with the cytolytic potential of CD8+ T cells, whereas IFN-γ production and peptide avidity appear to play a lesser role. Taken together, these findings illustrate that the LCMV-specific CD8+ T-cell response is more complex than previously appreciated.


2019 ◽  
Vol 16 (6) ◽  
pp. 7009-7021 ◽  
Author(s):  
Atefeh Afsar ◽  
◽  
Filipe Martins ◽  
Bruno M. P. M. Oliveira ◽  
Alberto A. Pinto ◽  
...  

1999 ◽  
Vol 73 (7) ◽  
pp. 5918-5925 ◽  
Author(s):  
Matthias von Herrath ◽  
Bryan Coon ◽  
Dirk Homann ◽  
Tom Wolfe ◽  
Luca G. Guidotti

ABSTRACT The outcome of viral infections is dependent on the amount of tissue destruction caused either by direct lysis of infected cells and/or by immunopathology resulting from the immune response to the virus. We investigated whether induction of tolerance to only one viral protein could reduce immunopathology caused by nonlytic lymphocytic choriomeningitis virus (LCMV) in perforin-deficient hosts. Earlier studies had shown that LCMV infection results in aplastic anemia and death in most of these mice and that this is associated with bone marrow infiltration by antiviral cytotoxic T lymphocytes (CTL) that secrete inflammatory cytokines. We report here that perforin-deficient mice exhibit severe immunopathology in multiple organs that is characterized by infiltration of anti-LCMV CTL that secrete large amounts of gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Importantly, this immunopathology is significantly reduced and long-term survival of LCMV infection is increased in perforin-deficient mice expressing LCMV nucleoprotein (NP) in the thymus (and therefore deleting most of their LCMV-NP CTL) compared to the situation in thymus nonexpressors. This is due to the selective reduction of NP-specific CTL responses and their inflammatory-cytokine (IFN-γ and TNF-α) secretion and to a lack of pathogenetically relevant compensatory responses to other viral proteins. Thus, “selective reduction” of the antiviral immune response to only one viral protein can significantly reduce inflammatory immunopathology and might be a therapeutic possibility for certain nonlytic infections.


2020 ◽  
Vol 94 (18) ◽  
Author(s):  
S. Klein ◽  
D. Ghersi ◽  
M. P. Manns ◽  
I. Prinz ◽  
M. Cornberg ◽  
...  

ABSTRACT Checkpoint inhibitors are effective in restoring exhausted CD8+ T cell responses in persistent viral infections or tumors. Several compounds are in clinical use for different malignancies, but trials in patients with chronic viral infections have also been conducted. In a mouse model of persistent lymphocytic choriomeningitis virus (LCMV) infection, it was shown that checkpoint inhibitor treatment increased T cell proliferation and functionality, but its influence on the antigen-specific T cell receptor (TCR) repertoire is unknown. NP396-specific CD8+ T cells dominate during acute LCMV infection and are predominantly exhausted during chronic infection. Next-generation sequencing of NP396-specific TCRs showed that exhaustion corresponds with a significantly reduced NP396-specific TCR repertoire diversity: Shannon indices of 4 in immunized mice to 2.6 in persistently infected mice. Anti-PD-L1 treatment during persistent LCMV infection restored NP396-specific T cell responses and reduced viral titers. Nevertheless, anti-PD-L1-treated mice showed an even more narrowed TCR repertoire, with reduced TCR diversity compared to that of persistently infected control mice (Shannon indices of 2.1 and 2.6, respectively). Interestingly, anti-PD-L1 treatment-induced narrowing of the TCR repertoire negatively correlates with functional and physical restoration of the antigen-specific T cell response. Further, we found that private, hyperexpanded TCR clonotypes dominated the T cell response after anti-PD-L1 treatment. Although being private, these top clonotypes from anti-PD-L1-treated mice revealed a more closely related CDR3 motif than those of top clonotypes from persistently infected control mice. In conclusion, although targeting the PD-1/PD-L1 pathway reinvigorates exhausted CD8+ T cells, it fails to restore T cell repertoire diversity. IMPORTANCE Checkpoint inhibitors are effective immunotherapeutics to restore cancer- and virus-induced exhausted CD8+ T cells, by enhancing the quality and survival of immune responses. Although checkpoint inhibitors are already used as therapy against various cancers, not much is known about their multifaceted impact on the exhausted CD8+ T cell receptor (TCR) repertoire. This report describes for the first time the evolvement of an exhausted antigen-specific CD8+ TCR repertoire under checkpoint inhibitor treatment. By using a well-established virus model, we were able to show major shifts toward oligoclonality of the CD8+ TCR repertoire response against a massively exhausted lymphocytic choriomeningitis virus (LCMV) epitope. While supporting viral control in the LCMV model, oligoclonality and more private of TCR repertoires may impact future pathogenic challenges and may promote viral escape. Our results may explain the ongoing problems of viral escapes, unpredictable autoimmunity, and heterogeneous responses appearing as adverse effects of checkpoint inhibitor treatments.


1998 ◽  
Vol 187 (11) ◽  
pp. 1903-1920 ◽  
Author(s):  
Daniel Binder ◽  
Maries F. van den Broek ◽  
David Kägi ◽  
Horst Bluethmann ◽  
Jörg Fehr ◽  
...  

Aplastic anemia may be associated with persistent viral infections that result from failure of the immune system to control virus. To evaluate the effects on hematopoiesis exerted by sustained viral replication in the presence of activated T cells, blood values and bone marrow (BM) function were analyzed in chronic infection with lymphocytic choriomeningitis virus (LCMV) in perforin-deficient (P0/0) mice. These mice exhibit a vigorous T cell response, but are unable to eliminate the virus. Within 14 d after infection, a progressive pancytopenia developed that eventually was lethal due to agranulocytosis and thrombocytopenia correlating with an increasing loss of morphologically differentiated, pluripotent, and committed progenitors in the BM. This hematopoietic disease caused by a noncytopathic chronic virus infection was prevented by depletion of CD8+, but not of CD4+, T cells and accelerated by increasing the frequency of LCMV-specific CD8+ T cells in T cell receptor (TCR) transgenic (tg) mice. LCMV and CD8+ T cells were found only transiently in the BM of infected wild-type mice. In contrast, increased numbers of CD8+ T cells and LCMV persisted at high levels in antigen-presenting cells of infected P0/0 and P0/0 × TCR tg mice. No cognate interaction between the TCR and hematopoietic progenitors presenting either LCMV-derived or self-antigens on the major histocompatibility complex was found, but damage to hematopoiesis was due to excessive secretion and action of tumor necrosis factor (TNF)/lymphotoxin (LT)-α and interferon (IFN)-γ produced by CD8+ T cells. This was studied in double-knockout mice that were genetically deficient in perforin and TNF receptor type 1. Compared with P0/0 mice, these mice had identical T cell compartments and T cell responses to LCMV, yet they survived LCMV infection and became life-long virus carriers. The numbers of hematopoietic precursors in the BM were increased compared with P0/0 mice after LCMV infection, although transient blood disease was still noticed. This residual disease activity was found to depend on IFN-γ–producing LCMV-specific T cells and the time point of hematopoietic recovery paralleled disappearance of these virus-specific, IFN-γ–producing CD8+ T cells. Thus, in the absence of IFN-γ and/or TNF/LT-α, exhaustion of virus-specific T cells was not hampered.


Sign in / Sign up

Export Citation Format

Share Document