Towards a User Support System for Computed Tomography Measurements Using Machine Learning

2021 ◽  
pp. 506-514
Author(s):  
K. Höger ◽  
L. Schäfer ◽  
L. Schild ◽  
G. Lanza
2021 ◽  
Vol 13 (3) ◽  
pp. 408
Author(s):  
Charles Nickmilder ◽  
Anthony Tedde ◽  
Isabelle Dufrasne ◽  
Françoise Lessire ◽  
Bernard Tychon ◽  
...  

Accurate information about the available standing biomass on pastures is critical for the adequate management of grazing and its promotion to farmers. In this paper, machine learning models are developed to predict available biomass expressed as compressed sward height (CSH) from readily accessible meteorological, optical (Sentinel-2) and radar satellite data (Sentinel-1). This study assumed that combining heterogeneous data sources, data transformations and machine learning methods would improve the robustness and the accuracy of the developed models. A total of 72,795 records of CSH with a spatial positioning, collected in 2018 and 2019, were used and aggregated according to a pixel-like pattern. The resulting dataset was split into a training one with 11,625 pixellated records and an independent validation one with 4952 pixellated records. The models were trained with a 19-fold cross-validation. A wide range of performances was observed (with mean root mean square error (RMSE) of cross-validation ranging from 22.84 mm of CSH to infinite-like values), and the four best-performing models were a cubist, a glmnet, a neural network and a random forest. These models had an RMSE of independent validation lower than 20 mm of CSH at the pixel-level. To simulate the behavior of the model in a decision support system, performances at the paddock level were also studied. These were computed according to two scenarios: either the predictions were made at a sub-parcel level and then aggregated, or the data were aggregated at the parcel level and the predictions were made for these aggregated data. The results obtained in this study were more accurate than those found in the literature concerning pasture budgeting and grassland biomass evaluation. The training of the 124 models resulting from the described framework was part of the realization of a decision support system to help farmers in their daily decision making.


2020 ◽  
Author(s):  
Luciano Vinas ◽  
Jessica Scholey ◽  
Martina Descovich ◽  
Vasant Kearney ◽  
Atchar Sudhyadhom

2021 ◽  
Vol 11 (13) ◽  
pp. 6237
Author(s):  
Azharul Islam ◽  
KyungHi Chang

Unstructured data from the internet constitute large sources of information, which need to be formatted in a user-friendly way. This research develops a model that classifies unstructured data from data mining into labeled data, and builds an informational and decision-making support system (DMSS). We often have assortments of information collected by mining data from various sources, where the key challenge is to extract valuable information. We observe substantial classification accuracy enhancement for our datasets with both machine learning and deep learning algorithms. The highest classification accuracy (99% in training, 96% in testing) was achieved from a Covid corpus which is processed by using a long short-term memory (LSTM). Furthermore, we conducted tests on large datasets relevant to the Disaster corpus, with an LSTM classification accuracy of 98%. In addition, random forest (RF), a machine learning algorithm, provides a reasonable 84% accuracy. This research’s main objective is to increase the application’s robustness by integrating intelligence into the developed DMSS, which provides insight into the user’s intent, despite dealing with a noisy dataset. Our designed model selects the random forest and stochastic gradient descent (SGD) algorithms’ F1 score, where the RF method outperforms by improving accuracy by 2% (to 83% from 81%) compared with a conventional method.


Author(s):  
Nosaiba Al-Ryalat ◽  
Lna Malkawi ◽  
Ala'a Abu Salhiyeh ◽  
Faisal Abualteen ◽  
Ghaida Abdallah ◽  
...  

Objectives: Our aim was to assess articles published in the field of radiology, nuclear medicine, and medical imaging in 2020, analyzing the linkage of radiology-related topics with coronavirus disease 2019 (COVID-19) through literature mapping, along with a bibliometric analysis for publications. Methods: We performed a search on Web of Science Core Collection database for articles in the field of radiology, nuclear medicine, and medical imaging published in 2020. We analyzed the included articles using VOS viewer software, where we analyzed the co-occurrence of keywords, which represents major topics discussed. Of the resulting topics, literature map created, and linkage analysis done. Results: A total of 24,748 articles were published in the field of radiology, nuclear medicine, and medical imaging in 2020. We found a total of 61,267 keywords, only 78 keywords occurred more than 250 times. COVID-19 had 449 occurrences, 29 links, with a total link strength of 271. MRI was the topic most commonly appearing in 2020 radiology publications, while “computed tomography” has the highest linkage strength with COVID-19, with a linkage strength of 149, representing 54.98% of the total COVID-19 linkage strength, followed by “radiotherapy, and “deep and machine learning”. The top cited paper had a total of 1,687 citations. Nine out of the 10 most cited articles discussed COVID-19 and included “COVID-19” or “coronavirus” in their title, including the top cited paper. Conclusion: While MRI was the topic that dominated, CT had the highest linkage strength with COVID-19 and represent the topic of top cited articles in 2020 radiology publications.


Sign in / Sign up

Export Citation Format

Share Document