A Hybrid Data Model and Flexible Indexing for Interactive Exploration of Large-Scale Bio-science Data

Author(s):  
Gajendra Doniparthi ◽  
Timo Mühlhaus ◽  
Stefan Deßloch
2016 ◽  
Author(s):  
John W. Williams ◽  
◽  
Simon Goring ◽  
Eric Grimm ◽  
Jason McLachlan

2020 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Miguel R. Luaces ◽  
Jesús A. Fisteus ◽  
Luis Sánchez-Fernández ◽  
Mario Munoz-Organero ◽  
Jesús Balado ◽  
...  

Providing citizens with the ability to move around in an accessible way is a requirement for all cities today. However, modeling city infrastructures so that accessible routes can be computed is a challenge because it involves collecting information from multiple, large-scale and heterogeneous data sources. In this paper, we propose and validate the architecture of an information system that creates an accessibility data model for cities by ingesting data from different types of sources and provides an application that can be used by people with different abilities to compute accessible routes. The article describes the processes that allow building a network of pedestrian infrastructures from the OpenStreetMap information (i.e., sidewalks and pedestrian crossings), improving the network with information extracted obtained from mobile-sensed LiDAR data (i.e., ramps, steps, and pedestrian crossings), detecting obstacles using volunteered information collected from the hardware sensors of the mobile devices of the citizens (i.e., ramps and steps), and detecting accessibility problems with software sensors in social networks (i.e., Twitter). The information system is validated through its application in a case study in the city of Vigo (Spain).


2021 ◽  
Author(s):  
Silvano Fortunato Dal Sasso ◽  
Alonso Pizarro ◽  
Sophie Pearce ◽  
Ian Maddock ◽  
Matthew T. Perks ◽  
...  

<p>Optical sensors coupled with image velocimetry techniques are becoming popular for river monitoring applications. In this context, new opportunities and challenges are growing for the research community aimed to: i) define standardized practices and methodologies; and ii) overcome some recognized uncertainty at the field scale. At this regard, the accuracy of image velocimetry techniques strongly depends on the occurrence and distribution of visible features on the water surface in consecutive frames. In a natural environment, the amount, spatial distribution and visibility of natural features on river surface are continuously challenging because of environmental factors and hydraulic conditions. The dimensionless seeding distribution index (SDI), recently introduced by Pizarro et al., 2020a,b and Dal Sasso et al., 2020, represents a metric based on seeding density and spatial distribution of tracers for identifying the best frame window (FW) during video footage. In this work, a methodology based on the SDI index was applied to different study cases with the Large Scale Particle Image Velocimetry (LSPIV) technique. Videos adopted are taken from the repository recently created by the COST Action Harmonious, which includes 13 case study across Europe and beyond for image velocimetry applications (Perks et al., 2020). The optimal frame window selection is based on two criteria: i) the maximization of the number of frames and ii) the minimization of SDI index. This methodology allowed an error reduction between 20 and 39% respect to the entire video configuration. This novel idea appears suitable for performing image velocimetry in natural settings where environmental and hydraulic conditions are extremely challenging and particularly useful for real-time observations from fixed river-gauged stations where an extended number of frames are usually recorded and analyzed.</p><p> </p><p><strong>References </strong></p><p>Dal Sasso S.F., Pizarro A., Manfreda S., Metrics for the Quantification of Seeding Characteristics to Enhance Image Velocimetry Performance in Rivers. Remote Sensing, 12, 1789 (doi: 10.3390/rs12111789), 2020.</p><p>Perks M. T., Dal Sasso S. F., Hauet A., Jamieson E., Le Coz J., Pearce S., …Manfreda S, Towards harmonisation of image velocimetry techniques for river surface velocity observations. Earth System Science Data, https://doi.org/10.5194/essd-12-1545-2020, 12(3), 1545 – 1559, 2020.</p><p>Pizarro A., Dal Sasso S.F., Manfreda S., Refining image-velocimetry performances for streamflow monitoring: Seeding metrics to errors minimisation, Hydrological Processes, (doi: 10.1002/hyp.13919), 1-9, 2020.</p><p>Pizarro A., Dal Sasso S.F., Perks M. and Manfreda S., Identifying the optimal spatial distribution of tracers for optical sensing of stream surface flow, Hydrology and Earth System Sciences, 24, 5173–5185, (10.5194/hess-24-5173-2020), 2020.</p>


2012 ◽  
Vol 8 (4) ◽  
pp. 2969-3013 ◽  
Author(s):  
A. M. Haywood ◽  
D. J. Hill ◽  
A. M. Dolan ◽  
B. Otto-Bliesner ◽  
F. Bragg ◽  
...  

Abstract. Climate and environments of the mid-Pliocene Warm Period (3.264 to 3.025 Ma) have been extensively studied. Whilst numerical models have shed light on the nature of climate at the time, uncertainties in their predictions have not been systematically examined. The Pliocene Model Intercomparison Project quantifies uncertainties in model outputs through a co-ordinated multi-model and multi-model/data intercomparison. Whilst commonalities in model outputs for the Pliocene are evident, we show substantial variation in the sensitivity of models to the implementation of Pliocene boundary conditions. Models appear able to reproduce many regional changes in temperature reconstructed from geological proxies. However, data/model comparison highlights the potential for models to underestimate polar amplification. To assert this conclusion with greater confidence, limitations in the time-averaged proxy data currently available must be addressed. Sensitivity tests exploring the "known unknowns" in modelling Pliocene climate specifically relevant to the high-latitudes are also essential (e.g. palaeogeography, gateways, orbital forcing and trace gasses). Estimates of longer-term sensitivity to CO2 (also known as Earth System Sensitivity; ESS), suggest that ESS is greater than Climate Sensitivity (CS), and that the ratio of ESS to CS is between 1 and 2, with a best estimate of 1.5.


2003 ◽  
Vol 1836 (1) ◽  
pp. 111-117
Author(s):  
Taek M. Kwon ◽  
Nirish Dhruv ◽  
Siddharth A. Patwardhan ◽  
Eil Kwon

Intelligent transportation system (ITS) sensor networks, such as road weather information and traffic sensor networks, typically generate enormous amounts of data. As a result, archiving, retrieval, and exchange of ITS sensor data for planning and performance analysis are becoming increasingly difficult. An efficient ITS archiving system that is compact and exchangeable and allows efficient and fast retrieval of large amounts of data is essential. A proposal is made for a system that can meet the present and future archiving needs of large-scale ITS data. This system is referred to as common data format (CDF) and was developed by the National Space Science Data Center for archiving, exchange, and management of large-scale scientific array data. CDF is an open system that is free and portable and includes self-describing data abstraction. Archiving traffic data by using CDF is demonstrated, and its archival and retrieval performance is presented for the Minnesota Department of Transportation–s 30-s traffic data collected from about 4,000 loop detectors around Twin Cities freeways. For comparison of the archiving performance, the same data were archived by using a commercially available relational database, which was evaluated for its archival and retrieval performance. This result is presented, along with reasons that CDF is a good fit for large-scale ITS data archiving, retrieval, and exchange of data.


2020 ◽  
Vol 48 ◽  
pp. 975-986
Author(s):  
Dimitrios I. Tselentis ◽  
Eleni I. Vlahogianni ◽  
George Yannis ◽  
Loukas Kavouras

Sign in / Sign up

Export Citation Format

Share Document