Metal–carbon Nanocomposite for Purification of Natural and Technogenicly Polluted Water from Oil Pollutants

2021 ◽  
pp. 221-233
Author(s):  
Yurii Zabulonov ◽  
Vadim Kadoshnikov ◽  
Tetyana Melnychenko ◽  
Valeriia Kovach ◽  
Liudmyla Sydorchuk
2019 ◽  
Vol 25 (1) ◽  
Author(s):  
GAJRAJ PANDEY ◽  
S.N. CHAUBEY ◽  
N.K. SRIVASTAVA

Sewage effluents were studied in polluted water including toxic damages on the flora of the area of Azamgarh district of Uttar Pradesh, India.


2019 ◽  
Vol 51 (3) ◽  
Author(s):  
Boussaid Khadidja ◽  
Cheboutimeziou Nadjiba
Keyword(s):  

2019 ◽  
Vol 70 (5) ◽  
pp. 1574-1578
Author(s):  
Cristian Neamtu ◽  
Bogdan Tutunaru ◽  
Adriana Samide ◽  
Alexandru Popescu

Electrochlorination constitutes an electrochemical approach for the treatment of pesticide-containing wastewaters. This study evaluated the electrochemical and thermal stability of four pesticides and the efficiency of electrochlorination to remove and detoxify the simulated polluted water with: Acetamiprid, Emamectin, Imidacloprid and Propineb. This study reports the experimental results obtained by cyclic voltammetry and electrolysis at constant current density in association with UV-Vis spectrophotometry. In saline waters this pesticides are electrochemical active and anodic peaks are registered in the corresponding voltammograms. After thermal combustion, in a gaseous nitrogen atmosphere, a residue ranging from 15 to 45 % is observed at 500 �C.


Author(s):  
Joshua O. Ighalo ◽  
Lois T. Arowoyele ◽  
Samuel Ogunniyi ◽  
Comfort A. Adeyanju ◽  
Folasade M. Oladipo-Emmanuel ◽  
...  

Background: The presence of pollutants in polluted water is not singularized hence pollutant species are constantly in competition for active sites during the adsorption process. A key advantage of competitive adsorption studies is that it informs on the adsorbent performance in real water treatment applications. Objective: This study aims to investigate the competitive adsorption of Pb(II), Cu(II), Fe(II) and Zn(II) using elephant grass (Pennisetum purpureum) biochar and hybrid biochar from LDPE. Method: The produced biochar was characterised by Scanning Electron Microscopy (SEM) and Fourier Transform Infrared Spectroscopy (FTIR). The effect of adsorption parameters, equilibrium isotherm modelling and parametric studies were conducted based on data from the batch adsorption experiments. Results: For both adsorbents, the removal efficiency was >99% over the domain of the entire investigation for dosage and contact time suggesting that they are very efficient for removing multiple heavy metals from aqueous media. It was observed that removal efficiency was optimal at 2 g/l dosage and contact time of 20 minutes for both adsorbent types. The Elovich isotherm and the pseudo-second order kinetic models were best-fit for the competitive adsorption process. Conclusion: The study was able to successfully reveal that biomass biochar from elephant grass and hybrid biochar from LDPE can be used as effective adsorbent material for the removal of heavy metals from aqueous media. This study bears a positive implication for environmental protection and solid waste management.


2019 ◽  
Vol 17 (1) ◽  
pp. 1017-1025
Author(s):  
Mohamed Réda Arhoutane ◽  
Muna Shueai Yahya ◽  
Miloud El Karbane ◽  
Kacem El Kacemi

AbstractIn the context of environmental protection, where there is a need to develop effective operations for carrying out appropriate treatment of polluted water by pharmaceuticals. Therefore, the present study aims at evaluating the degradation for gentamicin through electro-Fenton (EF) operation, through taking into consideration the effect of several parameters of experimental in the process, namely, the concentration of initial gentamicin, the applied current and the Fe+2 (II) quantities. The (EF) operation employed involves a carbon-felt as cathode and platinum as anode at pH 3. Studies for the gentamicin kinetics is monitored by HPLC giving a pseudo-first order reaction following by a chemical oxygen demand, with a reached degree of mineralization 96% after of four hours of treatment through current 100 mA/cm2 with 0.1 mM of Fe+2. We find that the degradation for molecule of gentamicin is accompanied by an augmentation of the biodegradability, assesse through the Biochemical Oxygen Demand (BOD5) on chemical oxygen demand (COD) ratio, that augmentation from 0 to 0.41 before treatment after 30 min for EF treatment, showing that there is potential for conjugation of the EF process and the biological process. Furthermore, the by-products have been identified on the basis of HPLC-MS/MS results.


2021 ◽  
Vol 11 (4) ◽  
Author(s):  
Theresa C. Umeh ◽  
John K. Nduka ◽  
Kovo G. Akpomie

AbstractDeterioration in soil–water environment severely contributed by heavy metal bioavailability and mobility on soil surface and sub-surface due to irrational increase in wastewater discharge and agrochemical activities. Therefore, the feasibility of adsorption characteristics of the soil is paramount in curbing the problem of micropollutant contamination in the farming vicinity. Soil from a farming site in a populated area in Enugu, Nigeria was collected and tested to measure the lead and cadmium contents using atomic absorption spectrophotometer (AAS). The adsorption potency of the ultisol soil was estimated for identifiable physicochemical properties by standard technique. The mean activity concentration of Pb2+ and Cd2+ was 15.68 mg/kg and 3.01 mg/kg. The pH, temperature, metal concentration and contact time adsorptive effect on the Pb2+ and Cd2+ uptake was evaluated by batch adsorption technique. The Langmuir, Freundlich and Temkin models were fitted into equilibrium adsorption data and the calculated results depict a better and satisfactory correlation for Langmuir with higher linear regression coefficients (Pb2+, 0.935 and Cd2+, 0.971). On the basis of sorption capacity mechanism of the soil, pseudo-second-order model best described the kinetics of both metal ions retention process. The results of the present study indicated that the soil being a low cost-effective adsorbent can be utilized to minimize the environmental risk impact of these metal ions.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1086
Author(s):  
Asma Abdulkareem ◽  
Anton Popelka ◽  
Patrik Sobolčiak ◽  
Aisha Tanvir ◽  
Mabrouk Ouederni ◽  
...  

This paper addresses the preparation and characterization of efficient adsorbents for tertiary treatment (oil content below 100 ppm) of oil/water emulsions. Powdered low-density polyethylene (LDPE) was modified by radio-frequency plasma discharge and then used as a medium for the treatment of emulsified diesel oil/water mixtures in the concentration range from 75 ppm to 200 ppm. Plasma treatment significantly increased the wettability of the LDPE powder, which resulted in enhanced sorption capability of the oil component from emulsions in comparison to untreated powder. Emulsions formed from distilled water and commercial diesel oil (DO) with concentrations below 200 ppm were used as a model of oily polluted water. The emulsions were prepared using ultrasonication without surfactant. The droplet size was directly proportional to sonication time and ranged from 135 nm to 185 nm. A sonication time of 20 min was found to be sufficient to prepare stable emulsions with an average droplet size of approximately 150 nm. The sorption tests were realized in a batch system. The effect of contact time and initial oil concentrations were studied under standard atmospheric conditions at a stirring speed of 340 rpm with an adsorbent particle size of 500 microns. The efficiency of the plasma-treated LDPE powder in oil removal was found to be dependent on the initial oil concentration. It decreased from 96.7% to 79.5% as the initial oil concentration increased from 75 ppm to 200 ppm. The amount of adsorbed oil increased with increasing contact time. The fastest adsorption was observed during the first 30 min of treatment. The adsorption kinetics for emulsified oils onto sorbent followed a pseudo-second-order kinetic model.


Sign in / Sign up

Export Citation Format

Share Document