The Improvement of Machining Process Scheduling with the Use of Heuristic Algorithms

2021 ◽  
pp. 766-776
Author(s):  
Anna Burduk ◽  
Łukasz Łampika ◽  
Dagmara Łapczyńska ◽  
Kamil Musiał
Author(s):  
J. Temple Black

Tool materials used in ultramicrotomy are glass, developed by Latta and Hartmann (1) and diamond, introduced by Fernandez-Moran (2). While diamonds produce more good sections per knife edge than glass, they are expensive; require careful mounting and handling; and are time consuming to clean before and after usage, purchase from vendors (3-6 months waiting time), and regrind. Glass offers an easily accessible, inexpensive material ($0.04 per knife) with very high compressive strength (3) that can be employed in microtomy of metals (4) as well as biological materials. When the orthogonal machining process is being studied, glass offers additional advantages. Sections of metal or plastic can be dried down on the rake face, coated with Au-Pd, and examined directly in the SEM with no additional handling (5). Figure 1 shows aluminum chips microtomed with a 75° glass knife at a cutting speed of 1 mm/sec with a depth of cut of 1000 Å lying on the rake face of the knife.


2019 ◽  
Vol 2 (3) ◽  
pp. 508-517
Author(s):  
FerdaNur Arıcı ◽  
Ersin Kaya

Optimization is a process to search the most suitable solution for a problem within an acceptable time interval. The algorithms that solve the optimization problems are called as optimization algorithms. In the literature, there are many optimization algorithms with different characteristics. The optimization algorithms can exhibit different behaviors depending on the size, characteristics and complexity of the optimization problem. In this study, six well-known population based optimization algorithms (artificial algae algorithm - AAA, artificial bee colony algorithm - ABC, differential evolution algorithm - DE, genetic algorithm - GA, gravitational search algorithm - GSA and particle swarm optimization - PSO) were used. These six algorithms were performed on the CEC’17 test functions. According to the experimental results, the algorithms were compared and performances of the algorithms were evaluated.


Author(s):  
S. Chakraborty ◽  
S. Mitra ◽  
D. Bose

The recent scenario of modern manufacturing is tremendously improved in the sense of precision machining and abstaining from environmental pollution and hazard issues. In the present work, Ti6Al4V is machined through wire EDM (WEDM) process with powder mixed dielectric and analyzed the influence of input parameters and inherent hazard issues. WEDM has different parameters such as peak current, pulse on time, pulse off time, gap voltage, wire speed, wire tension and so on, as well as dielectrics with powder mixed. These are playing an essential role in WEDM performances to improve the process efficiency by developing the surface texture, microhardness, and metal removal rate. Even though the parameter’s influencing, the study of environmental effect in the WEDM process is very essential during the machining process due to the high emission of toxic vapour by the high discharge energy. In the present study, three different dielectric fluids were used, including deionised water, kerosene, and surfactant added deionised water and analysed the data by taking one factor at a time (OFAT) approach. From this study, it is established that dielectric types and powder significantly improve performances with proper set of machining parameters and find out the risk factor associated with the PMWEDM process.


2014 ◽  
Vol 2014 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Jobin Christ ◽  
◽  
S. Sivagowri ◽  
Ganesh Babu ◽  
◽  
...  

Author(s):  
Satoru OCHIIWA ◽  
Satoshi TAOKA ◽  
Masahiro YAMAUCHI ◽  
Toshimasa WATANABE

Author(s):  
Satoru OCHIIWA ◽  
Satoshi TAOKA ◽  
Masahiro YAMAUCHI ◽  
Toshimasa WATANABE

Author(s):  
Ramandeep Kaur

A lot of research has been done in the field of cloud computing in computing domain.  For its effective performance, variety of algorithms has been proposed. The role of virtualization is significant and its performance is dependent on VM Migration and allocation. More of the energy is absorbed in cloud; therefore, the utilization of numerous algorithms is required for saving energy and efficiency enhancement in the proposed work. In the proposed work, green algorithm has been considered with meta heuristic algorithms, ABC (Artificial Bee colony .Every server has to perform different or same functions. A cloud computing infrastructure can be modelled as Primary Machineas a set of physical Servers/host PM1, PM2, PM3… PMn. The resources of cloud infrastructure can be used by the virtualization technology, which allows one to create several VMs on a physical server or host and therefore, lessens the hardware amount and enhances the resource utilization. The computing resource/node in cloud is used through the virtual machine. To address this problem, data centre resources have to be managed in resource -effective manner for driving Green Cloud computing that has been proposed in this work using Virtual machine concept with ABC and Neural Network optimization algorithm. The simulations have been carried out in CLOUDSIM environment and the parameters like SLA violations, Energy consumption and VM migrations along with their comparison with existing techniques will be performed.


2013 ◽  
Vol 58 (3) ◽  
pp. 871-875
Author(s):  
A. Herberg

Abstract This article outlines a methodology of modeling self-induced vibrations that occur in the course of machining of metal objects, i.e. when shaping casting patterns on CNC machining centers. The modeling process presented here is based on an algorithm that makes use of local model fuzzy-neural networks. The algorithm falls back on the advantages of fuzzy systems with Takagi-Sugeno-Kanga (TSK) consequences and neural networks with auxiliary modules that help optimize and shorten the time needed to identify the best possible network structure. The modeling of self-induced vibrations allows analyzing how the vibrations come into being. This in turn makes it possible to develop effective ways of eliminating these vibrations and, ultimately, designing a practical control system that would dispose of the vibrations altogether.


Sign in / Sign up

Export Citation Format

Share Document