Energy-Efficient Humidity Pump System for Poultry Houses

Author(s):  
Muhammad Sultan ◽  
Muhammad Aleem ◽  
Takahiko Miyazaki
2018 ◽  
Vol 13 (4) ◽  
pp. 404-413 ◽  
Author(s):  
Tugba Gurler ◽  
Theo Elmer ◽  
Yuanlong Cui ◽  
Siddig Omer ◽  
Saffa Riffat

2018 ◽  
Vol 219 ◽  
pp. 325-337 ◽  
Author(s):  
Nannan Shan ◽  
Yonggao Yin ◽  
Xiaosong Zhang

2021 ◽  
Author(s):  
Vegard Berge ◽  
Christoffer R. Helgesen ◽  
Dimitar Z. Ivanov ◽  
Marianne H. Jahren ◽  
Pauline S. Opstad ◽  
...  

Abstract The main aim of this article is to study and evaluate existing and potential lifting technologies used in deep sea mining. The lifting is an energy intensive operation and can be decisive if a mining operation is feasible or not. An additional goal for this study was to see if it can be rewarding to utilise the potential energy in the returned masses, because the excess material has to be returned to the ocean bottom so that no microorganisms would be released on the ocean surface. After a general study of possible solutions, regulations and existing projects, the technologies further explored in this study include an in-line pump system, a tubular-disc conveyor and a bucket conveyor, all with modifications to suit deep sea mining. To compare different lifting technologies an estimate for power consumption to lift the mined material from 1000 m depth at three different rates, namely 75, 150, 300 tons/hour, is considered. To calculate the power requirements realistic system parameters are considered and internal system resistance are also taken into account. The results show that the power consumption for the tubular and bucket conveyor are almost in the same range, while the pump system requires about two to three times more power than them. This indicates that there are feasible alternatives to hydraulic lifting by adapting existing onshore based technologies for deep sea mining.


2017 ◽  
Vol 139 (6) ◽  
Author(s):  
A. Hunter Fanney ◽  
William Healy ◽  
Vance Payne ◽  
Joshua Kneifel ◽  
Lisa Ng ◽  
...  

The Net-Zero Energy Residential Test Facility (NZERTF) was designed to be approximately 60% more energy efficient than homes meeting the 2012 International Energy Conservation Code requirements. The thermal envelope minimizes heat loss/gain through the use of advanced framing and enhanced insulation. A continuous air/moisture barrier resulted in an air exchange rate of 0.6 air changes per hour at 50 Pa. The home incorporates a vast array of extensively monitored renewable and energy efficient technologies including an air-to-air heat pump system with a dedicated dehumidification cycle; a ducted heat-recovery ventilation (HRV) system; a whole house dehumidifier; a photovoltaic system; and a solar domestic hot water system. During its first year of operation, the NZERTF produced an energy surplus of 1023 kWh. Based on observations during the first year, changes were made to determine if further improvements in energy performance could be obtained. The changes consisted of installing a thermostat that incorporated control logic to minimize the use of auxiliary heat, using a whole house dehumidifier in lieu of the heat pump's dedicated dehumidification cycle, and reducing the ventilation rate to a value that met but did not exceed code requirements. During the second year of operation, the NZERTF produced an energy surplus of 2241 kWh. This paper describes the facility, compares the performance data for the 2 years, and quantifies the energy impact of the weather conditions and operational changes.


Energies ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 4589 ◽  
Author(s):  
Amoabeng ◽  
Lee ◽  
Choi

The energy consumption for heating and cooling in the building sector accounts for more than one-third of total energy used worldwide. In view of that, it is important to develop energy efficient cooling and heating systems in order to conserve energy in buildings as well as reduce greenhouse gas emissions. In both commercial and residential buildings, the heat pump has been adopted as an energy efficient technology for space heating and cooling purposes as compared to conventional air conditioning systems. However, heat pumps undergo standard testing, rating, and certification procedures to ascertain their system performance. Essentially, the calorimeter for testing heat pumps has two test chambers to serve as a heat source and heat sink to control and maintain the test conditions required to simulate the heat pump indoor and outdoor units, simultaneously. In air-to-air heat pump units, the conventional calorimeter controls the air temperature and humidity conditions in each test chamber with separate air handling units consisting of a refrigerator, heater, humidifier, and supply fan, which results in high energy consumption. In this study, using dynamic modeling and simulation, a new calorimeter for controlling air conditions in each test chamber is proposed. The performance analysis based on simulation results showed that the newly proposed calorimeter predicted at least 43% energy savings with the use of a heat recovery unit and small refrigerator capacity as compared to the conventional calorimeter that utilized a large refrigerator capacity for all the weather conditions and load capacities that we investigated.


Author(s):  
Tugba Gurler ◽  
Theo Elmer ◽  
Yuanlong Cui ◽  
Siddig Omer ◽  
Saffa Riffat

Abstract The case study presented in this paper is an innovative ground source heat pump (GSHP) system constituted by a hybrid Photovoltaic Thermal (PVT) solar system for poultry houses. Farmers tend to not to apply GSHPs because of the high prices of excavation and time consumption. The innovative heat pump system assessed in this study comprises of a new type of heat exchangers; a thin-tube solar polyethylene heat exchanger installed between roof tiles and PV panels and a novel vertical ground heat exchanger to utilize the heat stored in the soil. The heating system applied to a poultry house are monitored and evaluated under a variety of environmental and operating conditions to achieve annual/long-term efficiency of the heating system in Kirton, UK. The maximum heating demand of the poultry house is determined 34.4 MWh/PC while the minimum is 11,1 MWh/PC. The monitored results show that the heat pump produced 15.02 MWh of thermal energy per annum. Solar PV and heat pump worked very well together with solar PV covering all the heat pump’s annual electrical energy requirement and generated 8.74 MWh of extra electricity exported to the grid. The seasonal coefficient of performance is found 3.73 through a year. The novel PVT-GSHP heating system is a very promising solution for high fossil fuel consumption in the agriculture industry and the energy savings of the whole system can be noticeably increased dependent up on the system controlling.


Buildings ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 356
Author(s):  
Fujen Wang ◽  
Kusnandar ◽  
Hungwen Lin ◽  
Minghua Tsai

With the cost of energy rising, the value of conservation grows. Interest in energy efficiency could be a sound investment or a necessary public policy. Heat pump systems provide economical alternatives of recovering heat from different sources for use in various applications. The objective of this study is to present the strategic approach on the energy efficient analysis of the water heating system retrofitted by applying a heat pump system in the dormitory of a university. Energy savings were determined by comparing field measurements of water consumption, water temperature and power consumption of the overall system before (electric resistance heating system) and after (heat pump heating system) the implementation of this project. Furthermore, the building energy simulation code (eQuest) has been applied to verify and predict the long-term energy consumption for both water heating systems. The results from energy modelling revealed the good agreement for energy simulation and field measurement data and the improvement of energy efficiency and energy savings could be achieved satisfactorily by retrofitting of a heat pump system. The energy conversion efficiency of hot water for energy consumption at 0.63 (Mcal/Mcal) could be achieved after the application of heat pump water heating system. It also presented the annual saving about USD 20,000 (NTD 600,000) for the dorm by using a heat pump heating system under the electrical billing rate of Taiwan.


2014 ◽  
pp. 115-118
Author(s):  
Imre Török

Energy consumption nearly 40% operation translates of the buildings in Hungary. In the last 5–8 years we can see a breakthrough in the field of low energy buildings, increasing the demand for buildings 'energy efficient', and realized several successful investments in our country. Nowadays thanks to the application system the number of public buildings increased environmental energy recovery system has been growing such as solar power, heat pumps.


Author(s):  
R. K. Pongiannan ◽  
S. N. Tantray ◽  
W. Iqbal Bhat ◽  
S. L. Ganaie ◽  
O. P. Dewangan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document