scholarly journals Analysis of Instagram Users’ Movement Pattern by Cluster Analysis and Association Rule Mining

Author(s):  
Zehui Wang ◽  
Luca Koroll ◽  
Wolfram Höpken ◽  
Matthias Fuchs

AbstractUnderstanding the characteristics of tourists’ movements is essential for tourism destination management. With advances in information and communication technology, more and more people are willing to upload photos and videos to various social media platforms while traveling. These openly available media data is gaining increasing attention in the field of movement pattern mining as a new data source. In this study, uploaded images and their geographic information within Lake Constance region, Germany were collected and through clustering analysis, a state-of-the-art k-means with noise removal algorithm was compared with the commonly used DBCSCAN on Instagram dataset. Finally, association rules between popular attractions at region-level and city-level were mined respectively. Results show that social media data like Instagram constitute a valuable input to analyse tourists’ movement patterns as input to decision support and destination management.

2021 ◽  
Author(s):  
Hansi Hettiarachchi ◽  
Mariam Adedoyin-Olowe ◽  
Jagdev Bhogal ◽  
Mohamed Medhat Gaber

AbstractSocial media is becoming a primary medium to discuss what is happening around the world. Therefore, the data generated by social media platforms contain rich information which describes the ongoing events. Further, the timeliness associated with these data is capable of facilitating immediate insights. However, considering the dynamic nature and high volume of data production in social media data streams, it is impractical to filter the events manually and therefore, automated event detection mechanisms are invaluable to the community. Apart from a few notable exceptions, most previous research on automated event detection have focused only on statistical and syntactical features in data and lacked the involvement of underlying semantics which are important for effective information retrieval from text since they represent the connections between words and their meanings. In this paper, we propose a novel method termed Embed2Detect for event detection in social media by combining the characteristics in word embeddings and hierarchical agglomerative clustering. The adoption of word embeddings gives Embed2Detect the capability to incorporate powerful semantical features into event detection and overcome a major limitation inherent in previous approaches. We experimented our method on two recent real social media data sets which represent the sports and political domain and also compared the results to several state-of-the-art methods. The obtained results show that Embed2Detect is capable of effective and efficient event detection and it outperforms the recent event detection methods. For the sports data set, Embed2Detect achieved 27% higher F-measure than the best-performed baseline and for the political data set, it was an increase of 29%.


2021 ◽  
Vol 20 (3) ◽  
pp. 402-416
Author(s):  
Amirhossein Teimouri

Abstract Social media platforms have been increasingly reinvigorating extreme movements, especially rightist movements. Utilizing unique Google Plus data, the author shows the rise and fall of the 2015 rightist anti-Nuclear Deal movement in Iran. He argues that the Google Plus platform in 2015 provided the new generation of revolutionary Islamist rightist activists with a contentious space of mobilization, enabling them to develop a new revolutionary rightist identity. This revolutionary identity and its corresponding language and discourse did not fully unfold in Iranian mainstream rightist media, even though rightist groups, compared to liberal groups, are not censored and repressed. The new generation of rightist activists perceived the Nuclear Deal as an existential threat to revolutionary principles of the country, and thus played out their outrage and identity anxieties on Google Plus. The author contends that this online outrage, due to the activists’ identity bond with the regime and the 1979 Iranian Revolution, however, did not translate into any massive offline mobilization against the Nuclear Deal. He also discusses the methodological implications of using social media data, especially the discontinuation of Google Plus.


Author(s):  
Mohamad Hasan

This paper presents a model to collect, save, geocode, and analyze social media data. The model is used to collect and process the social media data concerned with the ISIS terrorist group (the Islamic State in Iraq and Syria), and to map the areas in Syria most affected by ISIS accordingly to the social media data. Mapping process is assumed automated compilation of a density map for the geocoded tweets. Data mined from social media (e.g., Twitter and Facebook) is recognized as dynamic and easily accessible resources that can be used as a data source in spatial analysis and geographical information system. Social media data can be represented as a topic data and geocoding data basing on the text of the mined from social media and processed using Natural Language Processing (NLP) methods. NLP is a subdomain of artificial intelligence concerned with the programming computers to analyze natural human language and texts. NLP allows identifying words used as an initial data by developed geocoding algorithm. In this study, identifying the needed words using NLP was done using two corpora. First corpus contained the names of populated places in Syria. The second corpus was composed in result of statistical analysis of the number of tweets and picking the words that have a location meaning (i.e., schools, temples, etc.). After identifying the words, the algorithm used Google Maps geocoding API in order to obtain the coordinates for posts.


2018 ◽  
Vol 7 (4.38) ◽  
pp. 939
Author(s):  
Nur Atiqah Sia Abdullah ◽  
Hamizah Binti Anuar

Facebook and Twitter are the most popular social media platforms among netizen. People are now more aggressive to express their opinions, perceptions, and emotions through social media platforms. These massive data provide great value for the data analyst to understand patterns and emotions related to a certain issue. Mining the data needs techniques and time, therefore data visualization becomes trending in representing these types of information. This paper aims to review data visualization studies that involved data from social media postings. Past literature used node-link diagram, node-link tree, directed graph, line graph, heatmap, and stream graph to represent the data collected from the social media platforms. An analysis by comparing the social media data types, representation, and data visualization techniques is carried out based on the previous studies. This paper critically discussed the comparison and provides a suggestion for the suitability of data visualization based on the type of social media data in hand.      


2019 ◽  
Vol 10 (2) ◽  
pp. 57-70 ◽  
Author(s):  
Vikas Kumar ◽  
Pooja Nanda

With the amplification of social media platforms, the importance of social media analytics has exponentially increased for many brands and organizations across the world. Tracking and analyzing the social media data has been contributing as a success parameter for such organizations, however, the data is being poorly harnessed. Therefore, the ethical implications of social media analytics need to be identified and explored for both the organizations and targeted users of social media data. The present work is an exploratory study to identify the various techno-ethical concerns of social media engagement, as well as social media analytics. The impact of these concerns on the individuals, organizations, and society as a whole are discussed. Ethical engagement for the most common social media platforms has been outlined with a number of specific examples to understand the prominent techno-ethical concerns. Both the individual and organizational perspectives have been taken into account to identify the implications of social media analytics.


2018 ◽  
Vol 4 (3) ◽  
pp. 205630511878780 ◽  
Author(s):  
Luci Pangrazio ◽  
Neil Selwyn

Young people’s engagements with social media now generate large quantities of personal data, with “big social data” becoming an increasingly important “currency” in the digital economy. While using social media platforms is ostensibly “free,” users nevertheless “pay” for these services through their personal data—enabling advertisers, content developers, and other third parties to profile, predict, and position individuals. Such developments have prompted calls for social media users to adopt more informed and critical stances toward how and why their data are being used—that is, to build “critical data literacies.” This article reports on research that explores young social media users’ understandings of their personal data and its attendant issues. Drawing on research with groups of young people (aged 13–17 years), the article investigates the consequences of making third party (re)uses of personal data openly available for social media users to interpret and make critical sense of. The findings provide valuable insights into young people’s understandings of the technical, social, and cultural issues that underpin their ability to engage with, and make sense of, social media data. The article concludes by considering how research into critical data literacies might connect in more meaningful and effective ways with everyday lived experiences of social media use.


2021 ◽  
pp. 227797522110118
Author(s):  
Amit K. Srivastava ◽  
Rajhans Mishra

Social media platforms have become very popular these days among individuals and organizations. On the one hand, organizations use social media as a potential tool to create awareness of their products among consumers, and on the other hand, social media data is useful to predict the national crisis, election polls, stock prediction, etc. However, nowadays, a debate is going on about the quality of data generated on social media platforms, whether it is relevant for prediction and generalization. The article discusses the relevance and quality of data obtained from social media in the context of research and development. Social media data quality issues may impact the generalizability and reproducibility of the results of the study. The paper explores possible reasons for quality issues in the data generated over social media platforms along with the suggestive measures to minimize them using the proposed social media data quality framework.


2021 ◽  
Author(s):  
Elizabeth Dubois ◽  
Anatoliy Gruzd ◽  
Jenna Jacobson

Journalists increasingly use social media data to infer and report public opinion by quoting social media posts, identifying trending topics, and reporting general sentiment. In contrast to traditional approaches of inferring public opinion, citizens are often unaware of how their publicly available social media data is being used and how public opinion is constructed using social media analytics. In this exploratory study based on a census-weighted online survey of Canadian adults (N=1,500), we examine citizens’ perceptions of journalistic use of social media data. We demonstrate that: (1) people find it more appropriate for journalists to use aggregate social media data rather than personally identifiable data; (2) people who use more social media are more likely to positively perceive journalistic use of social media data to infer public opinion; and (3) the frequency of political posting is positively related to acceptance of this emerging journalistic practice, which suggests some citizens want to be heard publicly on social media while others do not. We provide recommendations for journalists on the ethical use of social media data and social media platforms on opt-in functionality.


Author(s):  
F. O. Ostermann ◽  
H. Huang ◽  
G. Andrienko ◽  
N. Andrienko ◽  
C. Capineri ◽  
...  

Increasing availability of Geo-Social Media (e.g. Facebook, Foursquare and Flickr) has led to the accumulation of large volumes of social media data. These data, especially geotagged ones, contain information about perception of and experiences in various environments. Harnessing these data can be used to provide a better understanding of the semantics of places. We are interested in the similarities or differences between different Geo-Social Media in the description of places. This extended abstract presents the results of a first step towards a more in-depth study of semantic similarity of places. Particularly, we took places extracted through spatio-temporal clustering from one data source (Twitter) and examined whether their structure is reflected semantically in another data set (Flickr). Based on that, we analyse how the semantic similarity between places varies over space and scale, and how Tobler's first law of geography holds with regards to scale and places.


10.2196/26119 ◽  
2021 ◽  
Vol 23 (8) ◽  
pp. e26119
Author(s):  
Guanghui Fu ◽  
Changwei Song ◽  
Jianqiang Li ◽  
Yue Ma ◽  
Pan Chen ◽  
...  

Background Web-based social media provides common people with a platform to express their emotions conveniently and anonymously. There have been nearly 2 million messages in a particular Chinese social media data source, and several thousands more are generated each day. Therefore, it has become impossible to analyze these messages manually. However, these messages have been identified as an important data source for the prevention of suicide related to depression disorder. Objective We proposed in this paper a distant supervision approach to developing a system that can automatically identify textual comments that are indicative of a high suicide risk. Methods To avoid expensive manual data annotations, we used a knowledge graph method to produce approximate annotations for distant supervision, which provided a basis for a deep learning architecture that was built and refined by interactions with psychology experts. There were three annotation levels, as follows: free annotations (zero cost), easy annotations (by psychology students), and hard annotations (by psychology experts). Results Our system was evaluated accordingly and showed that its performance at each level was promising. By combining our system with several important psychology features from user blogs, we obtained a precision of 80.75%, a recall of 75.41%, and an F1 score of 77.98% for the hardest test data. Conclusions In this paper, we proposed a distant supervision approach to develop an automatic system that can classify high and low suicide risk based on social media comments. The model can therefore provide volunteers with early warnings to prevent social media users from committing suicide.


Sign in / Sign up

Export Citation Format

Share Document