Analyzing Social Media Research: A Data Quality and Research Reproducibility Perspective

2021 ◽  
pp. 227797522110118
Author(s):  
Amit K. Srivastava ◽  
Rajhans Mishra

Social media platforms have become very popular these days among individuals and organizations. On the one hand, organizations use social media as a potential tool to create awareness of their products among consumers, and on the other hand, social media data is useful to predict the national crisis, election polls, stock prediction, etc. However, nowadays, a debate is going on about the quality of data generated on social media platforms, whether it is relevant for prediction and generalization. The article discusses the relevance and quality of data obtained from social media in the context of research and development. Social media data quality issues may impact the generalizability and reproducibility of the results of the study. The paper explores possible reasons for quality issues in the data generated over social media platforms along with the suggestive measures to minimize them using the proposed social media data quality framework.


2017 ◽  
Vol 30 (4) ◽  
pp. 777-794 ◽  
Author(s):  
Deborah Agostino ◽  
Yulia Sidorova

Purpose The purpose of this paper is to investigate how centres of calculation, now emerging in connection with social media, impact on the process of acting on distant customers. Specifically, the authors are interested in exploring how the distance between the organization and its customer is affected and how knowledge is accumulated within this centre. Design/methodology/approach A case study in an Italian telecommunication company was conducted over a time horizon of two years, analysing data sources in the form of interviews, documents and reports, corporate website, social media platforms and participants’ observations. With the adoption of social media, the company configured a new centre of calculation, called monitoring room, in the attempt to accumulate knowledge about its customers. The authors unpacked the activity of the centre of calculation discussing its ability to perform action upon a distant periphery and the process of knowledge accumulation inside the centre itself. Findings The results highlight the implication of social media for “action at a distance”. On the one hand, social media blurs the distinction between the centre and a periphery giving rise to a de-centring, and stimulating a joint control activity between the customer and the organization. On the other hand, social media was found vulnerable in providing a unique knowledge about customers: accumulation cycles that exploit social media data can be replicated by users with skills in data analytics and the knowledge they provide might conflict with knowledge provided by traditional data. Originality/value The authors contribute to an emergent stream of literature that is investigating accounting implications derived from social media, by underlying the controversial effects connected with centres of calculation enacted by social media data. The authors suggest that, while social media data provide the organization with huge amount of information real time, at the same time, it contributes to de-centring allowing customers and external actors to act upon the organization, rather than improving knowledge inside the centre.



2021 ◽  
Vol 40 (5) ◽  
pp. 9361-9382 ◽  
Author(s):  
Naeem Iqbal ◽  
Rashid Ahmad ◽  
Faisal Jamil ◽  
Do-Hyeun Kim

Quality prediction plays an essential role in the business outcome of the product. Due to the business interest of the concept, it has extensively been studied in the last few years. Advancement in machine learning (ML) techniques and with the advent of robust and sophisticated ML algorithms, it is required to analyze the factors influencing the success of the movies. This paper presents a hybrid features prediction model based on pre-released and social media data features using multiple ML techniques to predict the quality of the pre-released movies for effective business resource planning. This study aims to integrate pre-released and social media data features to form a hybrid features-based movie quality prediction (MQP) model. The proposed model comprises of two different experimental models; (i) predict movies quality using the original set of features and (ii) develop a subset of features based on principle component analysis technique to predict movies success class. This work employ and implement different ML-based classification models, such as Decision Tree (DT), Support Vector Machines with the linear and quadratic kernel (L-SVM and Q-SVM), Logistic Regression (LR), Bagged Tree (BT) and Boosted Tree (BOT), to predict the quality of the movies. Different performance measures are utilized to evaluate the performance of the proposed ML-based classification models, such as Accuracy (AC), Precision (PR), Recall (RE), and F-Measure (FM). The experimental results reveal that BT and BOT classifiers performed accurately and produced high accuracy compared to other classifiers, such as DT, LR, LSVM, and Q-SVM. The BT and BOT classifiers achieved an accuracy of 90.1% and 89.7%, which shows an efficiency of the proposed MQP model compared to other state-of-art- techniques. The proposed work is also compared with existing prediction models, and experimental results indicate that the proposed MQP model performed slightly better compared to other models. The experimental results will help the movies industry to formulate business resources effectively, such as investment, number of screens, and release date planning, etc.



2021 ◽  
Author(s):  
Hansi Hettiarachchi ◽  
Mariam Adedoyin-Olowe ◽  
Jagdev Bhogal ◽  
Mohamed Medhat Gaber

AbstractSocial media is becoming a primary medium to discuss what is happening around the world. Therefore, the data generated by social media platforms contain rich information which describes the ongoing events. Further, the timeliness associated with these data is capable of facilitating immediate insights. However, considering the dynamic nature and high volume of data production in social media data streams, it is impractical to filter the events manually and therefore, automated event detection mechanisms are invaluable to the community. Apart from a few notable exceptions, most previous research on automated event detection have focused only on statistical and syntactical features in data and lacked the involvement of underlying semantics which are important for effective information retrieval from text since they represent the connections between words and their meanings. In this paper, we propose a novel method termed Embed2Detect for event detection in social media by combining the characteristics in word embeddings and hierarchical agglomerative clustering. The adoption of word embeddings gives Embed2Detect the capability to incorporate powerful semantical features into event detection and overcome a major limitation inherent in previous approaches. We experimented our method on two recent real social media data sets which represent the sports and political domain and also compared the results to several state-of-the-art methods. The obtained results show that Embed2Detect is capable of effective and efficient event detection and it outperforms the recent event detection methods. For the sports data set, Embed2Detect achieved 27% higher F-measure than the best-performed baseline and for the political data set, it was an increase of 29%.



2021 ◽  
Vol 20 (3) ◽  
pp. 402-416
Author(s):  
Amirhossein Teimouri

Abstract Social media platforms have been increasingly reinvigorating extreme movements, especially rightist movements. Utilizing unique Google Plus data, the author shows the rise and fall of the 2015 rightist anti-Nuclear Deal movement in Iran. He argues that the Google Plus platform in 2015 provided the new generation of revolutionary Islamist rightist activists with a contentious space of mobilization, enabling them to develop a new revolutionary rightist identity. This revolutionary identity and its corresponding language and discourse did not fully unfold in Iranian mainstream rightist media, even though rightist groups, compared to liberal groups, are not censored and repressed. The new generation of rightist activists perceived the Nuclear Deal as an existential threat to revolutionary principles of the country, and thus played out their outrage and identity anxieties on Google Plus. The author contends that this online outrage, due to the activists’ identity bond with the regime and the 1979 Iranian Revolution, however, did not translate into any massive offline mobilization against the Nuclear Deal. He also discusses the methodological implications of using social media data, especially the discontinuation of Google Plus.



2020 ◽  
Vol 39 (3) ◽  
pp. 125-138
Author(s):  
Alina Zajadacz ◽  
Aleksandra Minkwitz

AbstractThe purpose of the article is to present the concept of using social media (SM) as data sources and communication tools, useful at the various stages of planning, implementing and monitoring the effects of tourism development on a local level. The first part discusses the stages of planning, then presents the characteristics of SM, along with a discussion of the issues presented in the literature to this date. The next part presents data sources and methods of research on SM and functions that they can perform in tourism. The concept presented, on the one hand, reviews the perspectives of practical use of SM as a communication tool and source of data and, on the other hand, the challenges related to the need to further deepen research on tourism planning methods that are adequate to the continuously changing environment.



2018 ◽  
Vol 7 (4.38) ◽  
pp. 939
Author(s):  
Nur Atiqah Sia Abdullah ◽  
Hamizah Binti Anuar

Facebook and Twitter are the most popular social media platforms among netizen. People are now more aggressive to express their opinions, perceptions, and emotions through social media platforms. These massive data provide great value for the data analyst to understand patterns and emotions related to a certain issue. Mining the data needs techniques and time, therefore data visualization becomes trending in representing these types of information. This paper aims to review data visualization studies that involved data from social media postings. Past literature used node-link diagram, node-link tree, directed graph, line graph, heatmap, and stream graph to represent the data collected from the social media platforms. An analysis by comparing the social media data types, representation, and data visualization techniques is carried out based on the previous studies. This paper critically discussed the comparison and provides a suggestion for the suitability of data visualization based on the type of social media data in hand.      



2020 ◽  
pp. 089443932092824 ◽  
Author(s):  
Michael J. Stern ◽  
Erin Fordyce ◽  
Rachel Carpenter ◽  
Melissa Heim Viox ◽  
Stuart Michaels ◽  
...  

Social media recruitment is no longer an uncharted avenue for survey research. The results thus far provide evidence of an engaging means of recruiting hard-to-reach populations. Questions remain, however, regarding whether the data collected using this method of recruitment produce quality data. This article assesses one aspect that may influence the quality of data gathered through nonprobability sampling using social media advertisements for a hard-to-reach sexual and gender minority youth population: recruitment design formats. The data come from the Survey of Today’s Adolescent Relationships and Transitions, which used a variety of forms of advertisements as survey recruitment tools on Facebook, Instagram, and Snapchat. Results demonstrate that design decisions such as the format of the advertisement (e.g., video or static) and the use of eligibility language on the advertisements impact the quality of the data as measured by break-off rates and the use of nonsubstantive responses. Additionally, the type of device used affected the measures of data quality.



2019 ◽  
Vol 10 (2) ◽  
pp. 57-70 ◽  
Author(s):  
Vikas Kumar ◽  
Pooja Nanda

With the amplification of social media platforms, the importance of social media analytics has exponentially increased for many brands and organizations across the world. Tracking and analyzing the social media data has been contributing as a success parameter for such organizations, however, the data is being poorly harnessed. Therefore, the ethical implications of social media analytics need to be identified and explored for both the organizations and targeted users of social media data. The present work is an exploratory study to identify the various techno-ethical concerns of social media engagement, as well as social media analytics. The impact of these concerns on the individuals, organizations, and society as a whole are discussed. Ethical engagement for the most common social media platforms has been outlined with a number of specific examples to understand the prominent techno-ethical concerns. Both the individual and organizational perspectives have been taken into account to identify the implications of social media analytics.



2018 ◽  
Vol 4 (3) ◽  
pp. 205630511878780 ◽  
Author(s):  
Luci Pangrazio ◽  
Neil Selwyn

Young people’s engagements with social media now generate large quantities of personal data, with “big social data” becoming an increasingly important “currency” in the digital economy. While using social media platforms is ostensibly “free,” users nevertheless “pay” for these services through their personal data—enabling advertisers, content developers, and other third parties to profile, predict, and position individuals. Such developments have prompted calls for social media users to adopt more informed and critical stances toward how and why their data are being used—that is, to build “critical data literacies.” This article reports on research that explores young social media users’ understandings of their personal data and its attendant issues. Drawing on research with groups of young people (aged 13–17 years), the article investigates the consequences of making third party (re)uses of personal data openly available for social media users to interpret and make critical sense of. The findings provide valuable insights into young people’s understandings of the technical, social, and cultural issues that underpin their ability to engage with, and make sense of, social media data. The article concludes by considering how research into critical data literacies might connect in more meaningful and effective ways with everyday lived experiences of social media use.



2021 ◽  
Author(s):  
Elizabeth Dubois ◽  
Anatoliy Gruzd ◽  
Jenna Jacobson

Journalists increasingly use social media data to infer and report public opinion by quoting social media posts, identifying trending topics, and reporting general sentiment. In contrast to traditional approaches of inferring public opinion, citizens are often unaware of how their publicly available social media data is being used and how public opinion is constructed using social media analytics. In this exploratory study based on a census-weighted online survey of Canadian adults (N=1,500), we examine citizens’ perceptions of journalistic use of social media data. We demonstrate that: (1) people find it more appropriate for journalists to use aggregate social media data rather than personally identifiable data; (2) people who use more social media are more likely to positively perceive journalistic use of social media data to infer public opinion; and (3) the frequency of political posting is positively related to acceptance of this emerging journalistic practice, which suggests some citizens want to be heard publicly on social media while others do not. We provide recommendations for journalists on the ethical use of social media data and social media platforms on opt-in functionality.



Sign in / Sign up

Export Citation Format

Share Document