Control of Non-Shivering Thermogenesis in a Hibernator

Author(s):  
W. Wünnenberg ◽  
G. Merker
Nature ◽  
1965 ◽  
Vol 206 (4980) ◽  
pp. 201-202 ◽  
Author(s):  
M. J. R. DAWKINS ◽  
J. W. SCOPES

2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Carmen P. Wong ◽  
Urszula T. Iwaniec ◽  
Russell T. Turner

AbstractSixteen-week-old female C57BL/6J mice were sacrificed aboard the International Space Station after 37 days of flight (RR-1 mission) and frozen carcasses returned to Earth. RNA was isolated from interscapular brown adipose tissue (BAT) and gonadal white adipose tissue (WAT). Spaceflight resulted in differential expression of genes in BAT consistent with increased non-shivering thermogenesis and differential expression of genes in WAT consistent with increased glucose uptake and metabolism, adipogenesis, and β-oxidation.


1966 ◽  
Vol 44 (5) ◽  
pp. 791-802 ◽  
Author(s):  
M. H. Sherebrin ◽  
A. C. Burton

The resting potential of single cells in the flexor thigh muscles of rats was measured in an attempt to find a change in the electrical properties of the cell membrane with cold acclimation, in order to identify and relate metabolic changes occurring with non-shivering thermogenesis. The mean resting potential of cells in cold-acclimated rats was found to be slightly but significantly higher than in the controls. A larger temperature gradient with depth was measured in the cold-acclimated animals than in the controls. If the Q10 of resting potential with temperature is as great as 1.16, the higher potential in the cold-acclimated rats may be accounted for by this temperature difference. The resting potential was also found to vary with depth in both groups of rats. This could not be attributed to temperature gradients, and change from red to white muscle cells with depth is thought to be the main factor for the increase of potential with depth.


PLoS ONE ◽  
2018 ◽  
Vol 13 (12) ◽  
pp. e0209225
Author(s):  
Evie P. M. Broeders ◽  
Guy H. E. J. Vijgen ◽  
Bas Havekes ◽  
Nicole D. Bouvy ◽  
Felix M. Mottaghy ◽  
...  

1992 ◽  
Vol 73 (4) ◽  
pp. 1253-1258 ◽  
Author(s):  
G. G. Giesbrecht ◽  
G. K. Bristow

An attempt was made to demonstrate the importance of increased perfusion of cold tissue in core temperature afterdrop. Five male subjects were cooled twice in water (8 degrees C) for 53–80 min. They were then rewarmed by one of two methods (shivering thermogenesis or treadmill exercise) for another 40–65 min, after which they entered a warm bath (40 degrees C). Esophageal temperature (Tes) as well as thigh and calf muscle temperatures at three depths (1.5, 3.0, and 4.5 cm) were measured. Cold water immersion was terminated at Tes varying between 33.0 and 34.5 degrees C. For each subject this temperature was similar in both trials. The initial core temperature afterdrop was 58% greater during exercise (mean +/- SE, 0.65 +/- 0.10 degrees C) than shivering (0.41 +/- 0.06 degrees C) (P < 0.005). Within the first 5 min after subjects entered the warm bath the initial rate of rewarming (previously established during shivering or exercise, approximately 0.07 degrees C/min) decreased. The attenuation was 0.088 +/- 0.03 degrees C/min (P < 0.025) after shivering and 0.062 +/- 0.022 degrees C/min (P < 0.025) after exercise. In 4 of 10 trials (2 after shivering and 2 after exercise) a second afterdrop occurred during this period. We suggest that increased perfusion of cold tissue is one probable mechanism responsible for attenuation or reversal of the initial rewarming rate. These results have important implications for treatment of hypothermia victims, even when treatment commences long after removal from cold water.


2002 ◽  
Vol 928 (1-2) ◽  
pp. 113-125 ◽  
Author(s):  
Maria V. Zaretskaia ◽  
Dmitry V. Zaretsky ◽  
Anantha Shekhar ◽  
Joseph A. DiMicco

Sign in / Sign up

Export Citation Format

Share Document