Development of a Solid-Borne Sound Sensor to Detect Bearing Faults Based on a MEMS Sensor and a PVDF Foil Sensor

Author(s):  
Jurij Kern ◽  
Carsten Thun ◽  
Jernej Herman
Keyword(s):  
2017 ◽  
Vol 6 (3) ◽  
pp. 20
Author(s):  
A. SAIPRIYA ◽  
V. MEENA ◽  
MAALIK M.ABDUL ◽  
D. PRAVINRAJ ◽  
P. JEGADEESHWARI ◽  
...  

Author(s):  
Erika Schutte ◽  
Jack Martin

Abstract An ellipsometry based measurement protocol was developed to evaluate changes to MEMS sensor surfaces which may occur during packaging using unpatterned test samples. This package-level technique has been used to measure the 0-20 Angstrom thin films that can form or deposit on die during the packaging process for a variety of packaging processing conditions. Correlations with device performance shows this to be a useful tool for packaged MEMS device and process characterization.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3929
Author(s):  
Han-Yun Chen ◽  
Ching-Hung Lee

This study discusses convolutional neural networks (CNNs) for vibration signals analysis, including applications in machining surface roughness estimation, bearing faults diagnosis, and tool wear detection. The one-dimensional CNNs (1DCNN) and two-dimensional CNNs (2DCNN) are applied for regression and classification applications using different types of inputs, e.g., raw signals, and time-frequency spectra images by short time Fourier transform. In the application of regression and the estimation of machining surface roughness, the 1DCNN is utilized and the corresponding CNN structure (hyper parameters) optimization is proposed by using uniform experimental design (UED), neural network, multiple regression, and particle swarm optimization. It demonstrates the effectiveness of the proposed approach to obtain a structure with better performance. In applications of classification, bearing faults and tool wear classification are carried out by vibration signals analysis and CNN. Finally, the experimental results are shown to demonstrate the effectiveness and performance of our approach.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1486
Author(s):  
Israel Zamudio-Ramirez ◽  
Roque A. Osornio-Rios ◽  
Jose A. Antonino-Daviu ◽  
Jonathan Cureño-Osornio ◽  
Juan-Jose Saucedo-Dorantes

Electric motors have been widely used as fundamental elements for driving kinematic chains on mechatronic systems, which are very important components for the proper operation of several industrial applications. Although electric motors are very robust and efficient machines, they are prone to suffer from different faults. One of the most frequent causes of failure is due to a degradation on the bearings. This fault has commonly been diagnosed at advanced stages by means of vibration and current signals. Since low-amplitude fault-related signals are typically obtained, the diagnosis of faults at incipient stages turns out to be a challenging task. In this context, it is desired to develop non-invasive techniques able to diagnose bearing faults at early stages, enabling to achieve adequate maintenance actions. This paper presents a non-invasive gradual wear diagnosis method for bearing outer-race faults. The proposal relies on the application of a linear discriminant analysis (LDA) to statistical and Katz’s fractal dimension features obtained from stray flux signals, and then an automatic classification is performed by means of a feed-forward neural network (FFNN). The results obtained demonstrates the effectiveness of the proposed method, which is validated on a kinematic chain (composed by a 0.746 KW induction motor, a belt and pulleys transmission system and an alternator as a load) under several operation conditions: healthy condition, 1 mm, 2 mm, 3 mm, 4 mm, and 5 mm hole diameter on the bearing outer race, and 60 Hz, 50 Hz, 15 Hz and 5 Hz power supply frequencies


2020 ◽  
Vol 1650 ◽  
pp. 022037
Author(s):  
Youyu Wu ◽  
Yiyao Xiao ◽  
Hua Ge

Sign in / Sign up

Export Citation Format

Share Document