A Networkless Data Exchange and Control Mechanism for Virtual Testbed Devices

Author(s):  
Tim Gerhard ◽  
Dennis Schwerdel ◽  
Paul Müller
2018 ◽  
Vol 28 (6) ◽  
pp. 1887-1891
Author(s):  
Todor Kalinov

Management and Command253 are two different words and terms, but military structures use them as synonyms. Military commanders’ authorities are almost equal in meaning to civilian managers’ privileges and power. Comparison between military command and the civilian management system structure, organization, and way of work shows almost full identity and overlapping. The highest in scale and size military systems are national ministries of defense and multinational military alliances and coalitions. Military systems at this level combine military command structures with civilian political leadership and support elements. Therefore, they incorporate both military command and civilian management organizations without any complications, because their nature originated from same source and have similar framework and content. Management of organizations requires communication in order to plan, coordinate, lead, control, and conduct all routine or extraordinary activities. Immediate long-distance communications originated from telegraphy, which was firstly applied in 19th century. Later, long-distance communications included telephony, aerial transmitting, satellite, and last but not least internet data exchange. They allowed immediate exchange of letters, voice and images, bringing to new capabilities of the managers. Their sophisticated technical base brought to new area of the military command and civilian management structures. These area covered technical and operational parts of communications, and created engineer sub-field of science, that has become one of the most popular educations, worldwide. Communications were excluded from the military command and moved to separate field, named Computers and Communications. A historic overview and analysis of the command and management structures and requirements shows their relationships, common origin, and mission. They have significant differences: management and control are based on humanities, natural and social sciences, while communications are mainly based on engineering and technology. These differences do not create enough conditions for defragmentation of communications from the management structures. They exist together in symbiosis and management structures need communications in order to exist and multiply their effectiveness and efficiency. Future defragmentation between military command and communications will bring risks of worse coordination, need for more human resources, and worse end states. These risks are extremely negative for nations and should be avoided by wide appliance of the education and science among nowadays and future leaders, managers, and commanders.


Machines ◽  
2019 ◽  
Vol 7 (2) ◽  
pp. 21 ◽  
Author(s):  
Abe Zeid ◽  
Sarvesh Sundaram ◽  
Mohsen Moghaddam ◽  
Sagar Kamarthi ◽  
Tucker Marion

Recent advances in manufacturing technology, such as cyber–physical systems, industrial Internet, AI (Artificial Intelligence), and machine learning have driven the evolution of manufacturing architectures into integrated networks of automation devices, services, and enterprises. One of the resulting challenges of this evolution is the increased need for interoperability at different levels of the manufacturing ecosystem. The scope ranges from shop–floor software, devices, and control systems to Internet-based cloud-platforms, providing various services on-demand. Successful implementation of interoperability in smart manufacturing would, thus, result in effective communication and error-prone data-exchange between machines, sensors, actuators, users, systems, and platforms. A significant challenge to this is the architecture and the platforms that are used by machines and software packages. A better understanding of the subject can be achieved by studying industry-specific communication protocols and their respective logical semantics. A review of research conducted in this area is provided in this article to gain perspective on the various dimensions and types of interoperability. This article provides a multi-faceted approach to the research area of interoperability by reviewing key concepts and existing research efforts in the domain, as well as by discussing challenges and solutions.


2015 ◽  
Vol 105 (04) ◽  
pp. 204-208
Author(s):  
D. Kreimeier ◽  
E. Müller ◽  
F. Morlock ◽  
D. Jentsch ◽  
H. Unger ◽  
...  

Kurzfristige sowie ungeplante Änderungen – wie Auftragsschwankungen, Maschinenausfälle oder Krankheitstage der Mitarbeiter – beeinflussen die Produktionsplanung und -steuerung (PPS) von Industriefirmen. Trends wie Globalisierung und erhöhter Marktdruck verstärken diese Probleme. Zur Komplexitätsbewältigung bei der Entscheidungsfindung zur Fertigungssteuerung kommen in der Produktion Werkzeuge der „Digitalen Fabrik“, beispielsweise Simulationsprogramme, oder IT (Informationstechnologie)-Lösungen, wie Manufacturing Execution Systems (MES), zum Einsatz. Eine Verknüpfung dieser Bereiche würde einen echtzeitfähigen Datenaustausch erlauben, der wiederum eine echtzeitfähige Entscheidungsunterstützung bietet. Der Fachbeitrag stellt hierfür einen Lösungsansatz vor.   Sudden and unsystematic changes, such as fluctuations in order flow, machine failures, or employee sick days affect the Production Planning and Control (PPC) activities of industrial companies. Trends like globalization and increased market pressure intensify these problems. To master the complexity of decision-making in production control, tools of the digital factory (e.g. simulation systems) or IT systems (e.g. Manufacturing Execution Systems (MES)) are applied in manufacturing. Combining these areas would enable real-time capable data exchange which, in turn, provides real-time capable decision support. This article presents an approach for solving this problem.


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6422
Author(s):  
Grega Morano ◽  
Andrej Hrovat ◽  
Matevž Vučnik ◽  
Janez Puhan ◽  
Gordana Gardašević ◽  
...  

The LOG-a-TEC testbed is a combined outdoor and indoor heterogeneous wireless testbed for experimentation with sensor networks and machine-type communications, which is included within the Fed4FIRE+ federation. It supports continuous deployment principles; however, it is missing an option to monitor and control the experiment in real-time, which is required for experiment execution under comparable conditions. The paper describes the implementation of the experiment control and monitoring system (EC and MS) as the upgrade of the LOG-a-TEC testbed. EC and MS is implemented within existing infrastructure management and built systems as a new service. The EC and MS is accessible as a new tab in sensor management system portal. It supports several commands, including start, stop and restart application, exit the experiment, flash or reset the target device, and displays the real-time status of the experiment application. When nodes apply Contiki-NG as their operating system, the Contiki-NG shell tool is accessible with the help of the newly developed tool, giving further experiment execution control capabilities to the user. By using the ZeroMQ concurrency framework as a message exchange system, information can be asynchronously sent to one or many devices at the same time, providing a real-time data exchange mechanism. The proposed upgrade does not disrupt any continuous deployment functionality and enables remote control and monitoring of the experiment. To evaluate the EC and MS functionality, two experiments were conducted: the first demonstrated the Bluetooth Low Energy (BLE) localization, while the second analysed interference avoidance in the 6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4e) wireless technology for the industrial Internet of Things (IIoT).


2021 ◽  
Vol 15 ◽  
Author(s):  
Alexandra M. Reardon ◽  
Kaiming Li ◽  
Xiaoping P. Hu

Background: Multi-site functional MRI (fMRI) databases are becoming increasingly prevalent in the study of neurodevelopmental and psychiatric disorders. However, multi-site databases are known to introduce site effects that may confound neurobiological and measures such as functional connectivity (FC). Although studies have been conducted to mitigate site effects, these methods often result in reduced effect size in FC comparisons between controls and patients.Methods: We present a site-wise de-meaning (SWD) strategy in multi-site FC analysis and compare its performance with two common site-effect mitigation methods, i.e., generalized linear model (GLM) and Combining Batches (ComBat) Harmonization. For SWD, after FC was calculated and Fisher z-transformed, the site-wise FC mean was removed from each subject before group-level statistical analysis. The above methods were tested on two multi-site psychiatric consortiums [Autism Brain Imaging Data Exchange (ABIDE) and Bipolar and Schizophrenia Network on Intermediate Phenotypes (B-SNIP)]. Preservation of consistent FC alterations in patients were evaluated for each method through the effect sizes (Hedge’s g) of patients vs. controls.Results: For the B-SNIP dataset, SWD improved the effect size between schizophrenic and control subjects by 4.5–7.9%, while GLM and ComBat decreased the effect size by 22.5–42.6%. For the ABIDE dataset, SWD improved the effect size between autistic and control subjects by 2.9–5.3%, while GLM and ComBat decreased the effect size by up to 11.4%.Conclusion: Compared to the original data and commonly used methods, the SWD method demonstrated superior performance in preserving the effect size in FC features associated with disorders.


Sign in / Sign up

Export Citation Format

Share Document