ASR Independent Hybrid Recurrent Neural Network Based Error Correction for Dialog System Applications

Author(s):  
Junhwi Choi ◽  
Seonghan Ryu ◽  
Kyusong Lee ◽  
Yonghee Kim ◽  
Sangjun Koo ◽  
...  
Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3884
Author(s):  
Fan Mei ◽  
Hong Chen ◽  
Yingke Lei

Forward error correction coding is the most common way of channel coding and the key point of error correction coding. Therefore, the recognition of which coding type is an important issue in non-cooperative communication. At present, the recognition of FEC codes is mainly concentrated in the field of semi-blind identification with known types of codes. However, the receiver cannot know the types of channel coding previously in non-cooperative systems such as cognitive radio and remote sensing of communication. Therefore, it is important to recognize the error-correcting encoding type with no prior information. In the paper, we come up with a neoteric method to identify the types of FEC codes based on Recurrent Neural Network (RNN) under the condition of non-cooperative communication. The algorithm classifies the input data into Bose-Chaudhuri-Hocquenghem (BCH) codes, Low-density Parity-check (LDPC) codes, Turbo codes and convolutional codes. So as to train the RNN model with better performance, the weight initialization method is optimized and the network performance is improved. The experimental result indicates that the average recognition rate of this model is 99% when the signal-to-noise ratio (SNR) ranges from 0 dB to 10 dB, which is in line with the requirements of engineering practice under the condition of non-cooperative communication. Moreover, the comparison of different parameters and models show the effectiveness and practicability of the algorithm proposed.


Quantum ◽  
2018 ◽  
Vol 2 ◽  
pp. 48 ◽  
Author(s):  
Paul Baireuther ◽  
Thomas E. O'Brien ◽  
Brian Tarasinski ◽  
Carlo W. J. Beenakker

A fault-tolerant quantum computation requires an efficient means to detect and correct errors that accumulate in encoded quantum information. In the context of machine learning, neural networks are a promising new approach to quantum error correction. Here we show that a recurrent neural network can be trained, using only experimentally accessible data, to detect errors in a widely used topological code, the surface code, with a performance above that of the established minimum-weight perfect matching (or blossom) decoder. The performance gain is achieved because the neural network decoder can detect correlations between bit-flip (X) and phase-flip (Z) errors. The machine learning algorithm adapts to the physical system, hence no noise model is needed. The long short-term memory layers of the recurrent neural network maintain their performance over a large number of quantum error correction cycles, making it a practical decoder for forthcoming experimental realizations of the surface code.


2020 ◽  
Vol 39 (6) ◽  
pp. 8927-8935
Author(s):  
Bing Zheng ◽  
Dawei Yun ◽  
Yan Liang

Under the impact of COVID-19, research on behavior recognition are highly needed. In this paper, we combine the algorithm of self-adaptive coder and recurrent neural network to realize the research of behavior pattern recognition. At present, most of the research of human behavior recognition is focused on the video data, which is based on the video number. At the same time, due to the complexity of video image data, it is easy to violate personal privacy. With the rapid development of Internet of things technology, it has attracted the attention of a large number of experts and scholars. Researchers have tried to use many machine learning methods, such as random forest, support vector machine and other shallow learning methods, which perform well in the laboratory environment, but there is still a long way to go from practical application. In this paper, a recursive neural network algorithm based on long and short term memory (LSTM) is proposed to realize the recognition of behavior patterns, so as to improve the accuracy of human activity behavior recognition.


2020 ◽  
Vol 2020 (17) ◽  
pp. 2-1-2-6
Author(s):  
Shih-Wei Sun ◽  
Ting-Chen Mou ◽  
Pao-Chi Chang

To improve the workout efficiency and to provide the body movement suggestions to users in a “smart gym” environment, we propose to use a depth camera for capturing a user’s body parts and mount multiple inertial sensors on the body parts of a user to generate deadlift behavior models generated by a recurrent neural network structure. The contribution of this paper is trifold: 1) The multimodal sensing signals obtained from multiple devices are fused for generating the deadlift behavior classifiers, 2) the recurrent neural network structure can analyze the information from the synchronized skeletal and inertial sensing data, and 3) a Vaplab dataset is generated for evaluating the deadlift behaviors recognizing capability in the proposed method.


Sign in / Sign up

Export Citation Format

Share Document