DNA Based Steganography: Survey and Analysis for Parameters Optimization

Author(s):  
Ghada Hamed ◽  
Mohammed Marey ◽  
Safaa El-Sayed ◽  
Fahmy Tolba
Author(s):  
Vinod Narang ◽  
P. Muthu ◽  
J.M. Chin ◽  
Vanissa Lim

Abstract Implant related issues are hard to detect with conventional techniques for advanced devices manufactured with deep sub-micron technology. This has led to introduction of site-specific analysis techniques. This paper presents the scanning capacitance microscopy (SCM) technique developed from backside of SOI devices for packaged products. The challenge from backside method includes sample preparation methodology to obtain a thin oxide layer of high quality, SCM parameters optimization and data interpretation. Optimization of plasma etching of buried oxide followed by a new method of growing thin oxide using UV/ozone is also presented. This oxidation method overcomes the limitations imposed due to packaged unit not being able to heat to high temperature for growing thermal oxide. Backside SCM successfully profiled both the n and p type dopants in both cache and core transistors.


2020 ◽  
Vol 15 ◽  
Author(s):  
Fei Sun ◽  
Guohe Li ◽  
Qi Zhang ◽  
Meng Liu

: Cr12MoV hardened steel is widely used in the manufacturing of stamping die because of its high strength, high hardness, and good wear resistance. As a kind of mainstream cutting technology, high-speed machining has been applied in the machining of Cr12MoV hardened steel. Based on the review of a large number of literature, the development of high-speed machining of Cr12MoV hardened steel was summarized, including the research status of the saw-tooth chip, cutting force, cutting temperature, tool wear, machined surface quality, and parameters optimization. The problems that exist in the current research were discussed and the directions of future research were pointed out. It can promote the development of high-speed machining of Cr12MoV hardened steel.


Sensors ◽  
2021 ◽  
Vol 21 (11) ◽  
pp. 3929
Author(s):  
Han-Yun Chen ◽  
Ching-Hung Lee

This study discusses convolutional neural networks (CNNs) for vibration signals analysis, including applications in machining surface roughness estimation, bearing faults diagnosis, and tool wear detection. The one-dimensional CNNs (1DCNN) and two-dimensional CNNs (2DCNN) are applied for regression and classification applications using different types of inputs, e.g., raw signals, and time-frequency spectra images by short time Fourier transform. In the application of regression and the estimation of machining surface roughness, the 1DCNN is utilized and the corresponding CNN structure (hyper parameters) optimization is proposed by using uniform experimental design (UED), neural network, multiple regression, and particle swarm optimization. It demonstrates the effectiveness of the proposed approach to obtain a structure with better performance. In applications of classification, bearing faults and tool wear classification are carried out by vibration signals analysis and CNN. Finally, the experimental results are shown to demonstrate the effectiveness and performance of our approach.


Sign in / Sign up

Export Citation Format

Share Document