A Novel 5-D Hyperchaotic System with a Line of Equilibrium Points and Its Adaptive Control

Author(s):  
Sundarapandian Vaidyanathan
2019 ◽  
Vol 30 (12) ◽  
pp. 2050004
Author(s):  
Ning Cui ◽  
Junhong Li

This paper formulates a new hyperchaotic system for particle motion. The continuous dependence on initial conditions of the system’s solution and the equilibrium stability, bifurcation, energy function of the system are analyzed. The hyperchaotic behaviors in the motion of the particle on a horizontal smooth plane are also investigated. It shows that the rich dynamic behaviors of the system, including the degenerate Hopf bifurcations and nondegenerate Hopf bifurcations at multiple equilibrium points, the irregular variation of Hamiltonian energy, and the hyperchaotic attractors. These results generalize and improve some known results about the particle motion system. Furthermore, the constraint of hyperchaos control is obtained by applying Lagrange’s method and the constraint change the system from a hyperchaotic state to asymptotically state. The numerical simulations are carried out to verify theoretical analyses and to exhibit the rich hyperchaotic behaviors.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Abir Lassoued ◽  
Olfa Boubaker

A novel hyperchaotic system with fractional-order (FO) terms is designed. Its highly complex dynamics are investigated in terms of equilibrium points, Lyapunov spectrum, and attractor forms. It will be shown that the proposed system exhibits larger Lyapunov exponents than related hyperchaotic systems. Finally, to enhance its potential application, a related circuit is designed by using the MultiSIM Software. Simulation results verify the effectiveness of the suggested circuit.


2016 ◽  
Vol 26 (13) ◽  
pp. 1650222 ◽  
Author(s):  
A. M. A. El-Sayed ◽  
A. Elsonbaty ◽  
A. A. Elsadany ◽  
A. E. Matouk

This paper presents an analytical framework to investigate the dynamical behavior of a new fractional-order hyperchaotic circuit system. A sufficient condition for existence, uniqueness and continuous dependence on initial conditions of the solution of the proposed system is derived. The local stability of all the system’s equilibrium points are discussed using fractional Routh–Hurwitz test. Then the analytical conditions for the existence of a pitchfork bifurcation in this system with fractional-order parameter less than 1/3 are provided. Conditions for the existence of Hopf bifurcation in this system are also investigated. The dynamics of discretized form of our fractional-order hyperchaotic system are explored. Chaos control is also achieved in discretized system using delay feedback control technique. The numerical simulation are presented to confirm our theoretical analysis via phase portraits, bifurcation diagrams and Lyapunov exponents. A text encryption algorithm is presented based on the proposed fractional-order system. The results show that the new system exhibits a rich variety of dynamical behaviors such as limit cycles, chaos and transient phenomena where fractional-order derivative represents a key parameter in determining system qualitative behavior.


2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Junhai Ma ◽  
Yujing Yang

A hyperchaotic system is introduced, and the complex dynamical behaviors of such system are investigated by means of numerical simulations. The bifurcation diagrams, Lyapunov exponents, hyperchaotic attractors, the power spectrums, and time charts are mapped out through the theory analysis and dynamic simulations. The chaotic and hyper-chaotic attractors exist and alter over a wide range of parameters according to the variety of Lyapunov exponents and bifurcation diagrams. Furthermore, linear feedback controllers are designed for stabilizing the hyperchaos to the unstable equilibrium points; thus, we achieve the goal of a second control which is more useful in application.


2014 ◽  
Vol 2014 ◽  
pp. 1-14 ◽  
Author(s):  
Ling Liu ◽  
Chongxin Liu

A novel nonlinear four-dimensional hyperchaotic system and its fractional-order form are presented. Some dynamical behaviors of this system are further investigated, including Poincaré mapping, parameter phase portraits, equilibrium points, bifurcations, and calculated Lyapunov exponents. A simple fourth-channel block circuit diagram is designed for generating strange attractors of this dynamical system. Specifically, a novel network module fractance is introduced to achieve fractional-order circuit diagram for hardware implementation of the fractional attractors of this nonlinear hyperchaotic system with order as low as 0.9. Observation results have been observed by using oscilloscope which demonstrate that the fractional-order nonlinear hyperchaotic attractors exist indeed in this new system.


2020 ◽  
Vol 30 (16) ◽  
pp. 2050242
Author(s):  
Shuangquan Gu ◽  
Baoxiang Du ◽  
Yujie Wan

This paper presents a new four-dimensional non-Hamiltonian conservative hyperchaotic system. In the absence of equilibrium points in the system, the phase trajectories generated by the system have hidden features. The conservative features that vary with the parameter have been analyzed in detail by Lyapunov exponent spectrum, bifurcation diagram, the sum of Lyapunov exponents, and the fractional dimensions, and during the analysis, multiple quasi-periodic four-dimensional tori as well as hyperchaotic attractors have been observed. The Poincaré sections confirm these dynamic behaviors. Amidst the process of studying the dynamical behavior of the system with initial values, the hidden extreme multistability, and the initial offset boosting behavior, the results have been witnessed for the very first time in a conservative chaotic system. The phase diagram and attraction basin also confirm this assertion, while two complex transient transition behaviors have been observed. Moreover, through the introduction of a spectral entropy algorithm, the complexity analysis of the time sequences generated by the system have been performed and compared with the existing literature. The results show that the system has a high degree of complexity. The design and construction of the analog circuit of the system for simulation, the circuit experimental results are consistent with the numerical simulation, further verifying the physical realizability of the newly proposed system. This lays a good foundation for its practical application in engineering.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Xiaoyuan Wang ◽  
Xiaotao Min ◽  
Pengfei Zhou ◽  
Dongsheng Yu

A novel hyperchaotic circuit is proposed by introducing a memristor feedback in a simple Lorenz-like chaotic system. Dynamic analysis shows that it has infinite equilibrium points and multistability. Additionally, the symmetrical coexistent attractors are investigated. Further, the hyperchaotic system is implemented by analogue circuits. Corresponding experimental results are completely consistent with the theoretical analysis.


Sign in / Sign up

Export Citation Format

Share Document