scholarly journals Hyperchaos Numerical Simulation and Control in a 4D Hyperchaotic System

2013 ◽  
Vol 2013 ◽  
pp. 1-16 ◽  
Author(s):  
Junhai Ma ◽  
Yujing Yang

A hyperchaotic system is introduced, and the complex dynamical behaviors of such system are investigated by means of numerical simulations. The bifurcation diagrams, Lyapunov exponents, hyperchaotic attractors, the power spectrums, and time charts are mapped out through the theory analysis and dynamic simulations. The chaotic and hyper-chaotic attractors exist and alter over a wide range of parameters according to the variety of Lyapunov exponents and bifurcation diagrams. Furthermore, linear feedback controllers are designed for stabilizing the hyperchaos to the unstable equilibrium points; thus, we achieve the goal of a second control which is more useful in application.

2021 ◽  
Vol 7 (4) ◽  
pp. 5117-5132
Author(s):  
Junhong Li ◽  
◽  
Ning Cui

<abstract><p>In this paper, we firstly formulate a new hyperchaotic Hamiltonian system and demonstrate the existence of multi-equilibrium points in the system. The characteristics of equilibrium points, Lyapunov exponents and Poincaré sections are studied. Secondly, we investigate the complex dynamical behaviors of the system under holonomic constraint and nonholonomic constraint, respectively. The results show that the hyperchaotic system can generated by introducing constraint. Additionally, the hyperchaos control of the system is achieved by applying linear feedback control. The numerical simulations are carried out in order to analyze the complex phenomena of the systems.</p></abstract>


2018 ◽  
Vol 28 (05) ◽  
pp. 1850057 ◽  
Author(s):  
Qigui Yang ◽  
Daoyu Zhu ◽  
Lingbing Yang

This paper reports the finding of a new seven-dimensional (7D) autonomous hyperchaotic system, which is obtained by coupling a 1D linear system and a 6D hyperchaotic system that is constructed by adding two linear feedback controllers and a nonlinear feedback controller to the Lorenz system. This hyperchaotic system has very simple algebraic structure but can exhibit complex dynamical behaviors. Of particular interest is that it has a hyperchaotic attractor with five positive Lyapunov exponents and a unique equilibrium in a large range of parameters. Numerical analysis of phase trajectories, Lyapunov exponents, bifurcation, power spectrum and Poincaré projections verifies the existence of hyperchaotic and chaotic attractors. Moreover, stability of the hyperbolic equilibrium is analyzed and a complete mathematical characterization for 7D Hopf bifurcation is given. Finally, circuit experiment implements the hyperchaotic attractor of the 7D system, showing very good agreement with the simulation results.


2009 ◽  
Vol 20 (02) ◽  
pp. 323-335 ◽  
Author(s):  
GUOSI HU ◽  
BO YU

Recently, there are many methods for constructing multi-wing/multi-scroll or hyperchaotic attractors; however, it has been noticed that the attractors with both multi-wing topological structure and hyperchaotic characteristic rarely exist. A new chaotic system, obtained by making the change on coordinate to the Hu chaotic system, can generate very complex attractors with four-wing topological structure and three positive Lyapunov exponents over a wide range of parameters. The influence of parameters varying to system dynamics is analyzed, computer simulations and bifurcation analysis is also verified in this paper.


SIMULATION ◽  
2017 ◽  
Vol 94 (2) ◽  
pp. 145-161
Author(s):  
Azzedine Yahiaoui

The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.


Author(s):  
Sundarapandian Vaidyanathan ◽  
Ahmad Taher Azar ◽  
Aceng Sambas ◽  
Shikha Singh ◽  
Kammogne Soup Tewa Alain ◽  
...  

This chapter announces a new four-dimensional hyperchaotic system having two positive Lyapunov exponents, a zero Lyapunov exponent, and a negative Lyapunov exponent. Since the sum of the Lyapunov exponents of the new hyperchaotic system is shown to be negative, it is a dissipative system. The phase portraits of the new hyperchaotic system are displayed with both two-dimensional and three-dimensional phase portraits. Next, the qualitative properties of the new hyperchaotic system are dealt with in detail. It is shown that the new hyperchaotic system has three unstable equilibrium points. Explicitly, it is shown that the equilibrium at the origin is a saddle-point, while the other two equilibrium points are saddle-focus equilibrium points. Thus, it is shown that all three equilibrium points of the new hyperchaotic system are unstable. Numerical simulations with MATLAB have been shown to validate and demonstrate all the new results derived in this chapter. Finally, a circuit design of the new hyperchaotic system is implemented in MultiSim to validate the theoretical model.


2015 ◽  
Vol 25 (04) ◽  
pp. 1550060 ◽  
Author(s):  
Qigui Yang ◽  
Waleed Mahgoub Osman ◽  
Chuntao Chen

This paper reports the finding of a new six-dimensional (6D) autonomous hyperchaotic system, which is obtained by coupling a 1D linear system and a 5D hyperchaotic system that is constructed by adding a linear feedback controller and a nonlinear feedback controller to the Lorenz system. This hyperchaotic system has very simple algebraic structure but can exhibit complex dynamical behaviors. Of particular interest is that it has a hyperchaotic attractor with four positive Lyapunov exponents and a unique equilibrium in a large range of parameters. Numerical analysis of phase trajectories, Lyapunov exponents, bifurcation, power spectrum and Poincaré projections verifies the existence of the hyperchaotic and chaotic attractors. In addition, stability of the hyperbolic equilibrium is analyzed and two complete mathematical characterizations for 6D Hopf bifurcation are given.


2018 ◽  
Vol 2018 ◽  
pp. 1-10
Author(s):  
Li-xin Yang ◽  
Xiao-jun Liu

This paper proposes a new fractional-order chaotic system with five terms. Firstly, basic dynamical properties of the fractional-order system are investigated in terms of the stability of equilibrium points, Jacobian matrices theoretically. Furthermore, rich dynamics with interesting characteristics are demonstrated by phase portraits, bifurcation diagrams numerically. Besides, the control problem of the new fractional-order system is discussed via numerical simulations. Our results demonstrate that the new fractional-order system has compound structure.


2011 ◽  
Vol 383-390 ◽  
pp. 4405-4412 ◽  
Author(s):  
Kun Zhang ◽  
Hua Wang ◽  
Hui Tao Wang

In this work, stability analysis of the Fractional-Order Arneodo system is studied by using the fractional Routh-Hurwitz criteria. Furthermore, the fractional Routh-Hurwitz conditions are used to control chaos in the proposed fractional-order system to its equilibria. Based on the fractional Routh-Hurwitz conditions and using specific choice of linear feedback controllers, it is shown that the Arneodo system is controlled to its equilibrium points. Numerical results show the effectiveness of the theoretical analysis.


2019 ◽  
Vol 28 (09) ◽  
pp. 1950151
Author(s):  
Jianbin He ◽  
Simin Yu

Over the last 40 years, the design of [Formula: see text]-dimensional hyperchaotic systems with a maximum number ([Formula: see text]) of positive Lyapunov exponents has been an open problem for research. Nowadays it is not difficult to design [Formula: see text]-dimensional hyperchaotic systems with less than ([Formula: see text]) positive Lyapunov exponents, but it is still extremely difficult to design an [Formula: see text]-dimensional hyperchaotic system with the maximum number ([Formula: see text]) of positive Lyapunov exponents. This paper aims to resolve this challenging problem by developing a chaotification approach using average eigenvalue criteria. The approach consists of four steps: (i) a globally bounded controlled system is designed based on an asymptotically stable nominal system with a uniformly bounded controller; (ii) a closed-loop pole assignment technique is utilized to ensure that the numbers of eigenvalues with positive real parts of the controlled system be equal to ([Formula: see text]) and ([Formula: see text]), respectively, at two saddle-focus equilibrium points; (iii) the number of average eigenvalues with positive real parts is ensured to be equal to ([Formula: see text]) for the controlled system over a given control period; (iv) the smallest value of the positive real parts of the average eigenvalues is ensured to be greater than a given threshold value. Finally, the paper is closed with some typical examples which illustrate the feasibility and performance of the proposed design methodology.


Filomat ◽  
2018 ◽  
Vol 32 (11) ◽  
pp. 3779-3789 ◽  
Author(s):  
Yadong Liu ◽  
Wenjun Liu

In this paper, we study the dynamic behavior and control of the fractional-order nutrientphytoplankton-zooplankton system. First, we analyze the stability of the fractional-order nutrient-plankton system and get the critical stable value of fractional orders. Then, by applying the linear feedback control and Routh-Hurwitz criterion, we yield the sufficient conditions to stabilize the system to its equilibrium points. Finally, Under a modified fractional-order Adams-Bashforth-Monlton algorithm, we simulate the results respectively.


Sign in / Sign up

Export Citation Format

Share Document